11 resultados para Lang’s three-dimensional theory

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis reports on the realization, characterization and analysis of ultracold bosonic and fermionic atoms in three-dimensional optical lattice potentials. Ultracold quantum gases in optical lattices can be regarded as ideal model systems to investigate quantum many-body physics. In this work interacting ensembles of bosonic 87Rb and fermionic 40K atoms are employed to study equilibrium phases and nonequilibrium dynamics. The investigations are enabled by a versatile experimental setup, whose core feature is a blue-detuned optical lattice that is combined with Feshbach resonances and a red-detuned dipole trap to allow for independent control of tunneling, interactions and external confinement. The Fermi-Hubbard model, which plays a central role in the theoretical description of strongly correlated electrons, is experimentally realized by loading interacting fermionic spin mixtures into the optical lattice. Using phase-contrast imaging the in-situ size of the atomic density distribution is measured, which allows to extract the global compressibility of the many-body state as a function of interaction and external confinement. Thereby, metallic and insulating phases are clearly identified. At strongly repulsive interaction, a vanishing compressibility and suppression of doubly occupied lattice sites signal the emergence of a fermionic Mott insulator. In a second series of experiments interaction effects in bosonic lattice quantum gases are analyzed. Typically, interactions between microscopic particles are described as two-body interactions. As such they are also contained in the single-band Bose-Hubbard model. However, our measurements demonstrate the presence of multi-body interactions that effectively emerge via virtual transitions of atoms to higher lattice bands. These findings are enabled by the development of a novel atom optical measurement technique: In quantum phase revival spectroscopy periodic collapse and revival dynamics of the bosonic matter wave field are induced. The frequencies of the dynamics are directly related to the on-site interaction energies of atomic Fock states and can be read out with high precision. The third part of this work deals with mixtures of bosons and fermions in optical lattices, in which the interspecies interactions are accurately controlled by means of a Feshbach resonance. Studies of the equilibrium phases show that the bosonic superfluid to Mott insulator transition is shifted towards lower lattice depths when bosons and fermions interact attractively. This observation is further analyzed by applying quantum phase revival spectroscopy to few-body systems consisting of a single fermion and a coherent bosonic field on individual lattice sites. In addition to the direct measurement of Bose-Fermi interaction energies, Bose-Bose interactions are proven to be modified by the presence of a fermion. This renormalization of bosonic interaction energies can explain the shift of the Mott insulator transition. The experiments of this thesis lay important foundations for future studies of quantum magnetism with fermionic spin mixtures as well as for the realization of complex quantum phases with Bose-Fermi mixtures. They furthermore point towards physics that reaches beyond the single-band Hubbard model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional electron microscopy (3-D EM) provides a framework for the analysis of large protein quaternary structures. The advantage over the generally higher resolving meth- od of X-ray crystallography is the embedding of the proteins in their physiological environ- ment. However, results of the two methods can be combined to obtain superior structural information. In this work, three different protein types – (i) Myriapod hemocyanin, (ii) vesi- cle-inducing protein in plastids 1 (Vipp1) and (iii) acetylcholine-binding protein (AChBP) – were structurally analyzed by 2-D and 3-D EM and, where possible, functionally interpreted.rnMyriapod hemocyanins have been previously shown to be 6x6-meric assemblies that, in case of Scutigera coleoptrata hemocyanin (ScoHc), show two 3x6-mer planes whith a stag- gering angle of approximately 60°. Here, previously observed structural differences between oxy- and deoxy-ScoHc could be substantiated. A 4° rotation between hexamers of two dif- ferent 3x6-mer planes was measured, which originates at the most central inter-hexamer in- terface. Further information about allosteric behaviour in myriapod hemocyanin was gained by analyzing Polydesmus angustus hemocyanin (PanHc), which shows a stable 3x6-mer and divergent histidine patterns in the inter-hexamer interfaces when compared to ScoHc. Both findings would conclusively explain the very different oxygen binding properties of chilopod and diplopod hemocyanin.rnVipp1 is a protein found in cyanobacteria and higher plants which is essential for thyla- koid membrane function and forms highly variable ring-shaped structures. In the course of this study, the first 3-D analysis of Vipp1 was conducted and yielded reconstructions of six differently sized Vipp1 rings from negatively stained images at resolutions between 20 to 30 Å. Furthermore, mutational analyses identified specific N-terminal amino acids that are essential for ring formation. On the basis of these analyses and previously published results, a hypothetical model of the Vipp1 tertiary and quaternary structure was generated.rnAChBP is a water-soluble protein in the hemolymph of mollusks. It is a structural and functional homologue of the ligand-binding domain of nicotinic acetylcholine receptors. For the freshwater snail Biomphalaria glabrata, we previously described two types of AChBP (BgAChBP1 and BgAChBP2). In this work, a 6 Å 3-D reconstruction of native BgAChBP is presented, which shows a dodecahedral assembly that is unprecedented for an AChBP. Single particle analysis of recombinantely expressed BgAChBP types led to preliminary results show- ing a dodecahedral assembly of BgAChBP1 and a dipentameric assembly of BgAChBP2. This indicates divergent biological functions of the two types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sample scanning confocal optical microscope (SCOM) was designed and constructed in order to perform local measurements of fluorescence, light scattering and Raman scattering. This instrument allows to measure time resolved fluorescence, Raman scattering and light scattering from the same diffraction limited spot. Fluorescence from single molecules and light scattering from metallic nanoparticles can be studied. First, the electric field distribution in the focus of the SCOM was modelled. This enables the design of illumination modes for different purposes, such as the determination of the three-dimensional orientation of single chromophores. Second, a method for the calculation of the de-excitation rates of a chromophore was presented. This permits to compare different detection schemes and experimental geometries in order to optimize the collection of fluorescence photons. Both methods were combined to calculate the SCOM fluorescence signal of a chromophore in a general layered system. The fluorescence excitation and emission of single molecules through a thin gold film was investigated experimentally and modelled. It was demonstrated that, due to the mediation of surface plasmons, single molecule fluorescence near a thin gold film can be excited and detected with an epi-illumination scheme through the film. Single molecule fluorescence as close as 15nm to the gold film was studied in this manner. The fluorescence dynamics (fluorescence blinking and excited state lifetime) of single molecules was studied in the presence and in the absence of a nearby gold film in order to investigate the influence of the metal on the electronic transition rates. The trace-histogram and the autocorrelation methods for the analysis of single molecule fluorescence blinking were presented and compared via the analysis of Monte-Carlo simulated data. The nearby gold influences the total decay rate in agreement to theory. The gold presence produced no influence on the ISC rate from the excited state to the triplet but increased by a factor of 2 the transition rate from the triplet to the singlet ground state. The photoluminescence blinking of Zn0.42Cd0.58Se QDs on glass and ITO substrates was investigated experimentally as a function of the excitation power (P) and modelled via Monte-Carlo simulations. At low P, it was observed that the probability of a certain on- or off-time follows a negative power-law with exponent near to 1.6. As P increased, the on-time fraction reduced on both substrates whereas the off-times did not change. A weak residual memory effect between consecutive on-times and consecutive off-times was observed but not between an on-time and the adjacent off-time. All of this suggests the presence of two independent mechanisms governing the lifetimes of the on- and off-states. The simulated data showed Poisson-distributed off- and on-intensities, demonstrating that the observed non-Poissonian on-intensity distribution of the QDs is not a product of the underlying power-law probability and that the blinking of QDs occurs between a non-emitting off-state and a distribution of emitting on-states with different intensities. All the experimentally observed photo-induced effects could be accounted for by introducing a characteristic lifetime tPI of the on-state in the simulations. The QDs on glass presented a tPI proportional to P-1 suggesting the presence of a one-photon process. Light scattering images and spectra of colloidal and C-shaped gold nano-particles were acquired. The minimum size of a metallic scatterer detectable with the SCOM lies around 20 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents algorithms for the calculation of the electrostatic interaction in partially periodic systems. The framework for these algorithms is provided by the simulation package ESPResSo, of which the author was one of the main developers. The prominent features of the program are listed and the internal structure is described. In the following, algorithms for the calculation of the Coulomb sum in three dimensionally periodic systems are described. These methods are the foundations for the algorithms for partially periodic systems presented in this work. Starting from the MMM2D method for systems with one non-periodic coordinate, the ELC method for these systems is developed. This method consists of a correction term which allows to use methods for three dimensional periodicity also for the case of two periodic coordinates. The computation time of this correction term is neglible for large numbers of particles. The performance of MMM2D and ELC are demonstrated by results from the implementations contained in ESPResSo. It is also discussed, how different dielectric constants inside and outside of the simulation box can be realized. For systems with one periodic coordinate, the MMM1D method is derived from the MMM2D method. This method is applied to the problem of the attraction of like-charged rods in the presence of counterions, and results of the strong coupling theory for the equilibrium distance of the rods at infinite counterion-coupling are checked against results from computer simulations. The degree of agreement between the simulations at finite coupling and the theory can be characterized by a single parameter gamma_RB. In the special case of T=0, one finds under certain circumstances flat configurations, in which all charges are located in the rod-rod plane. The energetically optimal configuration and its stability are determined analytically, which depends on only one parameter gamma_z, similar to gamma_RB. These findings are in good agreement with results from computer simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a simple (but fully three-dimensional) mathematical model for the electromagnetic exploration of buried, perfect electrically conducting objects within the soil underground. Moving an electric device parallel to the ground at constant height in order to generate a magnetic field, we measure the induced magnetic field within the device, and factor the underlying mathematics into a product of three operations which correspond to the primary excitation, some kind of reflection on the surface of the buried object(s) and the corresponding secondary excitation, respectively. Using this factorization we are able to give a justification of the so-called sampling method from inverse scattering theory for this particular set-up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In den letzten Jahren hat die Tumorbehandlung mit immunologischen Präparaten an Bedeutung gewonnen. Der allgemeine Ablauf der Testung eines Arzneimittelkandidaten sieht vor, zunächst in Zellkulturversuchen und Tierversuchen Wirkweise und Sicherheit, sowie voraussichtliche Abbauwege und mögliche Gefahren so beurteilen zu können, dass sie für einen Einsatz im Menschen in Frage kommen. Zur präklinischen in vitro-Testung werden dabei in der Regel Monolayer-Zellkulturen oder Einzelzellsuspensionen eingesetzt. Der Einsatz von 3D-Zellkulturmodellen, welche den Aufbau von Mikrometastasen oder intervaskuläre Areale in Tumoren exakter widerspiegeln, führt zu wesentlich besseren Voraussagen bezüglich der klinischen Wirksamkeit neuer Präparate. Das Ziel dieser Arbeit war daher die Entwicklung und Anwendung eines neuen 3D-Zellkulturbasierten Systems zur Testung trifunktionaler bispezifischer Antikörper für die Tumorbehandlung, welches sich auch auf andere vergleichbare Präparate übertragen lässt.rnIn meiner Arbeit konnte ich mehrere humane Tumorzelllinien definieren, mit denen es gelang, stabile Co-Kulturen von Multi Cellular Tumour Spheroids (MCTS) mit Peripheral Blood Mononuclear Cells (PBMC) in miniaturisierten Spinner-Flaschen zu etablieren. Spinner-Flaschen, in denen die im Kulturmedium befindlichen Immunzellen, MCTS und Therapeutika ständig frei zirkulieren, sind besonders für eine wirklichkeitsnahe Nachbildung der in vivo-Simulation mit disseminierten Tumorzellen oder mit malignem Aszites geeignet. Diese Art der Kultivierung erlaubte Beobachtungszeiten von ≥20 Tagen für eine große Bandbreite Analysemethoden. Zu den mit dem erstellten Protokoll standardmäßig durchführbaren Analysemethoden zählen unter anderem immunhistochemische Färbungen an Sphäroid-Gefrierschnitten, Vitalitätstest, Untersuchung der Plattierungs-Effizienz, Bestimmung der Sphäroidvolumina, Zytokinbestimmungen aus dem Medienüberstand mit Cytokine Bead Arrays, PCR-Analysen immunzellspezifischer Antigene, sowie durchflusszytometrische Analysen. Diese Methodenkombination erlaubt einen sehr detaillierten Einblick in die Wirkweise und Effizienz neuer Immuntherapeutika aus verschiedensten Blickwinkeln und stellt ein reproduzierbares Testsystem zur präklinischen Testung von Immuntherapeutika dar, das zukünftig als Bindeglied zwischen Monolayer-Zellkulturen und klinischen Prüfungen einen festen Platz einnehmen könnte.rnMit dem beschriebenen 3D-Zellkultur-System wurden in der vorliegenden Arbeit die trifunktionalen bispezifischen Antikörper catumaxomab (unter dem Handelsnamen Removab® für die Behandlung maligner Ascites zugelassen) und ertumaxomab (derzeit in klinischen Prüfungen) hinsichtlich ihrer Wirkweise untersucht. Die Antikörper besitzen im Gegensatz zu herkömmlichen monoklonalen Antikörpern zwei verschiedene Bindungsarme, einer gegen CD3 auf T-Zellen, der zweite gegen EpCAM respektive Her2/neu - beides weit verbreitete Tumorantigene - gerichtet. An ihrem Fc-Teil besitzen sie eine dritte Bindungskapazität, über welche sie an Fcγ RI, -IIa und -III positive akzessorische Zellen binden. Diese Kombination ermöglicht theoretisch die Ausbildung eines Tri-Zell-Komplexes aus T-Zelle, Tumorzelle und akzessorischer Zelle. Dies stellt eine wirkungsvolle Therapieoption unter Ausnutzung der körpereigenen, immunologischen Abwehr dar. rnIm Rahmen dieser Arbeit wurde gezeigt, dass beide Antikörper eine Größenreduktion der Sphäroide mit den entsprechenden Tumorantigenen in gleichem Maße bewirkten und die Plattierungseffizienz durch ertumaxomab dosisabhängig reduziert wurde. Mit dem erstellten Testsystem konnte der Wirkmechanismus von catumaxomab auf Sphäroide der Zelllinie FaDu (Kopf-Hals-Plattenepithelkarzinom) detaillierter gezeigt werden: catumaxomab wirkte dosisabhängig auf die Reduktion der Sphäroidvolumina und die zunehmende Infiltration von CD45+ Zellen, die als T-, NK- und/oder dendritische Zellen identifiziert wurden. Des Weiteren rief die catumaxomab-Gabe eine verstärkte Ausschüttung der Zytokine IL-2, IFN-γ und TNF-α hervor. Diese Ergebnisse sprechen dafür, dass catumaxomab die zelluläre Immunantwort aktiviert.rnDie Standard-Tumorbehandlung beinhaltet die Gabe von Chemotherapeutika. Oft werden dafür Zytostatika mit dem unerwünschten Nebeneffekt auch gesunde proliferierende Zellen anzugreifen verwendet. Dies kann prinzipiell auch die Wirksamkeit der Antikörper-Therapie beeinflussen. Aus diesem Grund wurden in dieser Arbeit zusätzlich vergleichende Kombinations-Versuche mit catumaxomab und einem gängigen Zytostatikum - Cisplatin - durchgeführt. Mit Untersuchungen der Sphäroidvolumina, Vitalitätstests und Plattierungseffizienz konnte gezeigt werden, dass die Wirkung von catumaxomab bei gleichzeitiger Anwendung beider Therapeutika aufrecht erhalten bleibt und diese sogar additiv verstärkt wird. Eine Kombinationstherapie im Menschen ist daher denkbar.rnrn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Während das Standardmodell der Elementarteilchenphysik eine konsistente, renormierbare Quantenfeldtheorie dreier der vier bekannten Wechselwirkungen darstellt, bleibt die Quantisierung der Gravitation ein bislang ungelöstes Problem. In den letzten Jahren haben sich jedoch Hinweise ergeben, nach denen metrische Gravitation asymptotisch sicher ist. Das bedeutet, daß sich auch für diese Wechselwirkung eine Quantenfeldtheorie konstruieren läßt. Diese ist dann in einem verallgemeinerten Sinne renormierbar, der nicht mehr explizit Bezug auf die Störungstheorie nimmt. Zudem sagt dieser Zugang, der auf der Wilsonschen Renormierungsgruppe beruht, die korrekte mikroskopische Wirkung der Theorie voraus. Klassisch ist metrische Gravitation auf dem Niveau der Vakuumfeldgleichungen äquivalent zur Einstein-Cartan-Theorie, die das Vielbein und den Spinzusammenhang als fundamentale Variablen verwendet. Diese Theorie besitzt allerdings mehr Freiheitsgrade, eine größere Eichgruppe, und die zugrundeliegende Wirkung ist von erster Ordnung. Alle diese Eigenschaften erschweren eine zur metrischen Gravitation analoge Behandlung.rnrnIm Rahmen dieser Arbeit wird eine dreidimensionale Trunkierung von der Art einer verallgemeinerten Hilbert-Palatini-Wirkung untersucht, die neben dem Laufen der Newton-Konstante und der kosmologischen Konstante auch die Renormierung des Immirzi-Parameters erfaßt. Trotz der angedeuteten Schwierigkeiten war es möglich, das Spektrum des freien Hilbert-Palatini-Propagators analytisch zu berechnen. Auf dessen Grundlage wird eine Flußgleichung vom Propertime-Typ konstruiert. Zudem werden geeignete Eichbedingungen gewählt und detailliert analysiert. Dabei macht die Struktur der Eichgruppe eine Kovariantisierung der Eichtransformationen erforderlich. Der resultierende Fluß wird für verschiedene Regularisierungsschemata und Eichparameter untersucht. Dies liefert auch im Einstein-Cartan-Zugang berzeugende Hinweise auf asymptotische Sicherheit und damit auf die mögliche Existenz einer mathematisch konsistenten und prädiktiven fundamentalen Quantentheorie der Gravitation. Insbesondere findet man ein Paar nicht-Gaußscher Fixpunkte, das Anti-Screening aufweist. An diesen sind die Newton-Konstante und die kosmologische Konstante jeweils relevante Kopplungen, wohingegen der Immirzi-Parameter an einem Fixpunkt irrelevant und an dem anderen relevant ist. Zudem ist die Beta-Funktion des Immirzi-Parameters von bemerkenswert einfacher Form. Die Resultate sind robust gegenüber Variationen des Regularisierungsschemas. Allerdings sollten zukünftige Untersuchungen die bestehenden Eichabhängigkeiten reduzieren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the different approaches for a construction of a fundamental quantum theory of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be defined within the framework of conventional quantum field theory, but only non-perturbatively. In this case its high energy behavior is controlled by a non-Gaussian fixed point of the renormalization group flow, such that its infinite cutoff limit can be taken in a well defined way. A theory of this kind is referred to as non-perturbatively renormalizable. In the last decade a considerable amount of evidence has been collected that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic Safety construction, indeed exists. This thesis extends the Asymptotic Safety program of quantum gravity by three independent studies that differ in the fundamental field variables the investigated quantum theory is based on, but all exhibit a gauge group of equivalent semi-direct product structure. It allows for the first time for a direct comparison of three asymptotically safe theories of gravity constructed from different field variables. The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In particular the gravitational effects to the running of the gauge coupling are analyzed and its implications for QED and the Standard Model are discussed. The second analysis amounts to the first investigation on an asymptotically safe theory of gravity in a pure tetrad formulation. Its renormalization group flow is compared to the corresponding approximation of the metric theory and the influence of its enlarged gauge group on the UV behavior of the theory is analyzed. The third study explores Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad, the spin connection is considered a second fundamental field. The larger number of independent field components and the enlarged gauge group render any RG analysis of this system much more difficult than the analog metric analysis. In order to reduce the complexity of this task a novel functional renormalization group equation is proposed, that allows for an evaluation of the flow in a purely algebraic manner. As a first example of its suitability it is applied to a three dimensional truncation of the form of the Holst action, with the Newton constant, the cosmological constant and the Immirzi parameter as its running couplings. A detailed comparison of the resulting renormalization group flow to a previous study of the same system demonstrates the reliability of the new equation and suggests its use for future studies of extended truncations in this framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In condensed matter systems, the interfacial tension plays a central role for a multitude of phenomena. It is the driving force for nucleation processes, determines the shape and structure of crystalline structures and is important for industrial applications. Despite its importance, the interfacial tension is hard to determine in experiments and also in computer simulations. While for liquid-vapor interfacial tensions there exist sophisticated simulation methods to compute the interfacial tension, current methods for solid-liquid interfaces produce unsatisfactory results.rnrnAs a first approach to this topic, the influence of the interfacial tension on nuclei is studied within the three-dimensional Ising model. This model is well suited because despite its simplicity, one can learn much about nucleation of crystalline nuclei. Below the so-called roughening temperature, nuclei in the Ising model are not spherical anymore but become cubic because of the anisotropy of the interfacial tension. This is similar to crystalline nuclei, which are in general not spherical but more like a convex polyhedron with flat facets on the surface. In this context, the problem of distinguishing between the two bulk phases in the vicinity of the diffuse droplet surface is addressed. A new definition is found which correctly determines the volume of a droplet in a given configuration if compared to the volume predicted by simple macroscopic assumptions.rnrnTo compute the interfacial tension of solid-liquid interfaces, a new Monte Carlo method called ensemble switch method'' is presented which allows to compute the interfacial tension of liquid-vapor interfaces as well as solid-liquid interfaces with great accuracy. In the past, the dependence of the interfacial tension on the finite size and shape of the simulation box has often been neglected although there is a nontrivial dependence on the box dimensions. As a consequence, one needs to systematically increase the box size and extrapolate to infinite volume in order to accurately predict the interfacial tension. Therefore, a thorough finite-size scaling analysis is established in this thesis. Logarithmic corrections to the finite-size scaling are motivated and identified, which are of leading order and therefore must not be neglected. The astounding feature of these logarithmic corrections is that they do not depend at all on the model under consideration. Using the ensemble switch method, the validity of a finite-size scaling ansatz containing the aforementioned logarithmic corrections is carefully tested and confirmed. Combining the finite-size scaling theory with the ensemble switch method, the interfacial tension of several model systems, ranging from the Ising model to colloidal systems, is computed with great accuracy.