21 resultados para Isobutylene-isoprene
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Terrestrische Vegetation, vor allem tropischer Regenwald, emittiert grosse Mengen flüchtiger organischer Verbindungen (VOCs) in die rnAtmosphäre, die durch Oxidationsreaktionen und Deposition der Reaktionsprodukte wieder entfernt werden. Die Oxidation wird vor allem durch Hydroxyl-Radikale (OH) initiiert, die hauptsächlich durch Photodissoziation von Ozon gebildet werden. Zuvor ging man davon aus, dass biogene VOCs OH in unverschmutzter Luft abbauen und dadurch die atmosphärische Oxidationskapazität verringern. Umgekehrt, führt rndie Oxidation von VOCs in verschmutzter Luft durch die katalytische Wirkung von Stickstoffoxiden (NOx = NO + NO2) zu schädlicher Oxidationsmittelbildung. Flugzeugmessungen atmosphärischer Spurengase, die über dem unberührten Amazonas-Regenwald durchgeführt worden sind, haben jedoch unerwartet hohe OH-Konzentrationen aufgezeigt. Das VOC mit der höchsten Emission in dieser Region war Isopren, dessen Oxidation als stärkeste OH-Senke berechnet wurde. In dieser Arbeit wurde die Hypothese genauestens untersucht, dass die natürliche Isopren-Oxidation in niedrig-NOx Luft OH effizient erneuert. Es wurde ein sehr detaillierter Oxidationsmechanismus für Isopren entwickelt, in dem neueste experimentelle und theoretische Fortschritte umgesetzt worden sind. Die Haupt-OH-Rückgewinnungswege wurden angewendet wodurch gezeigt wurde, dass sie wesentlich zur Oxidation unter niedrig-NOx Bedingungen beitragen. Verstärkte OH-Konzentrationen blieben unter verminderten Lichtverhältnissen, wie sie unter dichten Vegetationsdächern typisch sind, dauerhaft erhalten. Im Vergleich zu Flugzeugmessungen, der neue Oxidationsmechanismus reproduziert die OH-Konzentrationen innerhalb des Unsicherheitsbereiches. Darüber hinaus zeigten Simulationen eine erhebliche Produktion eines Isopren-Dihydroxyepoxids, das ein potenziell wichtiger Vorläufer organischer Aerosole in der Atmosphäre sein könnte. Es wurde einen neuen vereinfachten Oxidationsmechanismus auf Basis des traditionellen Wissenstands entwickelt und seine Anwendung für globale atmosphärische Studien getestet. Die Eingliederung der neuen Oxidationswege in diesen Mechanismus ermöglicht es folgende Auswirkungen der verstärkten VOC-Oxidation zu studieren die Zusammensetzung der Atmosphäre, den Austausch zwischen Erdoberfläche und Atmosphäre, Aerosole und Klima.
Resumo:
In dieser Dissertation stellen wir einen neuen Ansatz zurModellierungvon Polymersystemen vor. Es werden (von methodischer Seiteher) zweiautomatisierte Iterationschemata dazu eingeführt,Kraftfeldparametermesoskopischer Polymersysteme systematisch zu optimieren:DasSimplex-Verfahren und das Struktur-Differenzen-Verfahren. Sowerdendiejenigen Freiheitsgrade aus Polymersystemen eliminiert,die einehohe Auflösung erfordern, was die Modellierung größerersystemeermöglicht. Nach Tests an einfachen Flüssigkeiten werdenvergröberteModelle von drei prototypischen Polymeren (Polyacrylsäure,Polyvinylalkohol und Polyisopren) in unterschiedlichenUmgebungen(gutes Lösungsmittel und Schmelze) entwickelt und ihrVerhalten aufder Mesoskala ausgiebig geprüft. Die zugehörige Abbildung(vonphysikalischer Seite her) so zu gestalten, daß sie dieunverwechselbaren Charakteristiken jedes systems auf diemesoskopischeLängenskala überträgt, stellt eine entscheidende Anforderungan dieautomatisierten Verfahren dar. Unsere Studien belegen, daß mesoskopische Kraftfeldertemperatur- unddichtespezifisch sind und daher bei geändernden Bedingungennachoptimiert werden müssen. Gleichzeitig läßt sichabschätzen, beiwelchen Umgebungsbedingungen dies noch nicht notwendig wird.In allenFällen reichen effektive Paarpotentiale aus, einrealistischesmesoskopisches Modell zu konstruieren. VergröberteSimulationenwerden im Falle der Polyacrylsäure erfolgreich gegenexperimentelleLichtstreudaten getestet. Wir erzielen für Molmassen bis zu300000g/mol eine hervorragende Übereinstimmung für denhydrodynamischenRadius. Unsere Ergebnisse erklären auch Korrekturen zudessenVerhalten als Funktion der Kettenlänge ('Skalenverhalten'). Im Fallevon Polyisopren untersuchen wir sowohl statische als auchdynamischeGrößen und stellen klare Unterschiede unserer Ergebnisse zudeneneines einfachen semi-flexiblen Mesoskalenmodells fest. InderProteinforschung werden aus Datenbanken gewonnene effektivePaarwechselwirkungen dazu verwendet, die freie Energie einesneuensystems vorherzusagen. Wir belegen in einem Exkurs mittelsGittersimulationen, daß es selbst in einfachsten Fällennicht gelingt,dies auch nur qualitativ korrekt zu bewerkstelligen.
Resumo:
Der Austausch von Spurengasen und Aerosolpartikeln zwischenAtmosphäre und Biosphäre spielt eine wichtige Rolle in derAtmosphärenphysik und -chemie. Wälder repräsentieren sowohleine signifikante Senke als auch Quelle für Spurengase undPartikel und tragen somit maßgeblich zu derenatmosphärischem Budget bei. Strahlungsnebel beeinflußt durchAufnahme, Entfernen und Prozessieren von Aerosolpartikelnund löslichen Spurengasen deren Konzentrationen in derGasphase. In dieser Arbeit wird erstmalig ein Modell präsentiert,welches die Simulation des Austausches zwischen Atmosphäreund Biosphäre unter Berücksichtigung der dynamischenWechselwirkung zwischen Strahlungsnebel, Blattflächenwasserund Mehrphasenchemie ermöglicht. Numerische Fallstudien mitfolgenden Schwerpunkten werden präsentiert: - Einfluß von Vegetation und Blattflächenwasser auf diezeitlichen und räumlichen Schwankungen derGrößenabhängigkeit der Flüssigphasenkonzentrationen inNebeltropfen, - Einfluß von Blattflächenwasser auf dieTrockendepositionsflüsse von Ammoniak im Wald - Simulationenwurden mit einem neuen dynamischen Depositionsmodelldurchgeführt und mit dem Widerstandsansatz verglichen -, - Einfluß von physikalischen und chemischen Prozessen aufdie Reduktion von NO- und Isoprenemissionen aus demWaldbestand verglichen mit den primären Emissionen.
Resumo:
Die vorliegende Dissertation untersucht die biogeochemischen Vorgänge in der Vegetationsschicht (Bestand) und die Rückkopplungen zwischen physiologischen und physikalischen Umweltprozessen, die das Klima und die Chemie der unteren Atmosphäre beeinflussen. Ein besondere Schwerpunkt ist die Verwendung theoretischer Ansätze zur Quantifizierung des vertikalen Austauschs von Energie und Spurengasen (Vertikalfluss) unter besonderer Berücksichtigung der Wechselwirkungen der beteiligten Prozesse. Es wird ein differenziertes Mehrschicht-Modell der Vegetation hergeleitet, implementiert, für den amazonischen Regenwald parametrisiert und auf einen Standort in Rondonia (Südwest Amazonien) angewendet, welches die gekoppelten Gleichungen zur Energiebilanz der Oberfläche und CO2-Assimilation auf der Blattskala mit einer Lagrange-Beschreibung des Vertikaltransports auf der Bestandesskala kombiniert. Die hergeleiteten Parametrisierungen beinhalten die vertikale Dichteverteilung der Blattfläche, ein normalisiertes Profil der horizontalen Windgeschwindigkeit, die Lichtakklimatisierung der Photosynthesekapazität und den Austausch von CO2 und Wärme an der Bodenoberfläche. Desweiteren werden die Berechnungen zur Photosynthese, stomatären Leitfähigkeit und der Strahlungsabschwächung im Bestand mithilfe von Feldmessungen evaluiert. Das Teilmodell zum Vertikaltransport wird im Detail unter Verwendung von 222-Radon-Messungen evaluiert. Die ``Vorwärtslösung'' und der ``inverse Ansatz'' des Lagrangeschen Dispersionsmodells werden durch den Vergleich von beobachteten und vorhergesagten Konzentrationsprofilen bzw. Bodenflüssen bewertet. Ein neuer Ansatz wird hergeleitet, um die Unsicherheiten des inversen Ansatzes aus denjenigen des Eingabekonzentrationsprofils zu quantifizieren. Für nächtliche Bedingungen wird eine modifizierte Parametrisierung der Turbulenz vorgeschlagen, welche die freie Konvektion während der Nacht im unteren Bestand berücksichtigt und im Vergleich zu früheren Abschätzungen zu deutlich kürzeren Aufenthaltszeiten im Bestand führt. Die vorhergesagte Stratifizierung des Bestandes am Tage und in der Nacht steht im Einklang mit Beobachtungen in dichter Vegetation. Die Tagesgänge der vorhergesagten Flüsse und skalaren Profile von Temperatur, H2O, CO2, Isopren und O3 während der späten Regen- und Trockenzeit am Rondonia-Standort stimmen gut mit Beobachtungen überein. Die Ergebnisse weisen auf saisonale physiologische Änderungen hin, die sich durch höhere stomatäre Leitfähigkeiten bzw. niedrigere Photosyntheseraten während der Regen- und Trockenzeit manifestieren. Die beobachteten Depositionsgeschwindigkeiten für Ozon während der Regenzeit überschreiten diejenigen der Trockenzeit um 150-250%. Dies kann nicht durch realistische physiologische Änderungen erklärt werden, jedoch durch einen zusätzlichen cuticulären Aufnahmemechanismus, möglicherweise an feuchten Oberflächen. Der Vergleich von beobachteten und vorhergesagten Isoprenkonzentrationen im Bestand weist auf eine reduzierte Isoprenemissionskapazität schattenadaptierter Blätter und zusätzlich auf eine Isoprenaufnahme des Bodens hin, wodurch sich die globale Schätzung für den tropischen Regenwald um 30% reduzieren würde. In einer detaillierten Sensitivitätsstudie wird die VOC Emission von amazonischen Baumarten unter Verwendung eines neuronalen Ansatzes in Beziehung zu physiologischen und abiotischen Faktoren gesetzt. Die Güte einzelner Parameterkombinationen bezüglich der Vorhersage der VOC Emission wird mit den Vorhersagen eines Modells verglichen, das quasi als Standardemissionsalgorithmus für Isopren dient und Licht sowie Temperatur als Eingabeparameter verwendet. Der Standardalgorithmus und das neuronale Netz unter Verwendung von Licht und Temperatur als Eingabeparameter schneiden sehr gut bei einzelnen Datensätzen ab, scheitern jedoch bei der Vorhersage beobachteter VOC Emissionen, wenn Datensätze von verschiedenen Perioden (Regen/Trockenzeit), Blattentwicklungsstadien, oder gar unterschiedlichen Spezies zusammengeführt werden. Wenn dem Netzwerk Informationen über die Temperatur-Historie hinzugefügt werden, reduziert sich die nicht erklärte Varianz teilweise. Eine noch bessere Leistung wird jedoch mit physiologischen Parameterkombinationen erzielt. Dies verdeutlicht die starke Kopplung zwischen VOC Emission und Blattphysiologie.
Resumo:
This dissertation focuses on characterizing the emissions of volatile organic compounds (VOCs) from grasses and young trees, and the burning of biomass mainly from Africa and Indonesia. The measurements were performed with a proton-transfer-reaction mass spectrometer (PTR-MS). The biogenic emissions of tropical savanna vegetation were studied in Calabozo (Venezuela). Two field campaigns were carried out, the first during the wet season (1999) and the second during the dry season (2000). Three grass species were studied: T. plumosus, H. rufa and A. canescens, and the tree species B. crassifolia, C. americana and C. vitifolium. The emission rates were determined with a dynamic plant enclosure system. In general, the emissions increased exponentially with increasing temperature and solar radiation. Therefore, the emission rates showed high variability. Consequently, the data were normalized to a standard temperature of 30°C, and standard emission rates thus determined allowed for interspecific and seasonal comparisons. The range of average daytime (10:00-16:00) emission rates of total VOCs measured from green (mature and young) grasses was between 510-960 ngC/g/h. Methanol was the primary emission (140-360 ngC/g/h), followed by acetaldehyde, butene and butanol and acetone with emission rates between 70-200 ngC/g/h. The emissions of propene and methyl ethyl ketone (MEK) were <80 ngC/g/h, and those of isoprene and C5-alcohols were between 10-130 ngC/g/h. The oxygenated species represented 70-75% of the total. The emission of VOCs was found to vary by up to a factor of three between plants of the same species, and by up to a factor of two between the different species. The annual source of methanol from savanna grasses worldwide estimated in this work was 3 to 4.4 TgC, which could represent up to 12% of the current estimated global emission from terrestrial vegetation. Two of the studied tree species, were isoprene emitters, and isoprene was also their primary emission (which accounted for 70-94% of the total carbon emitted) followed by methanol and butene + butanol. The daytime average emission rate of isoprene measured in the wet season was 27 mgC/g/h for B. crassifolia, and 123 mgC/g/h for C. vitifolium. The daytime emissions of methanol and butene + butanol were between 0.3 and 2 mgC/g/h. The total sum of VOCs emission measured during the day in the wet season was between 30 and 130 mgC/g/h. In the dry season, in contrast, the methanol emissions from C. vitifolium saplings –whose leaves were still developing– were an order of magnitude higher than in the wet season (15 mgC/g/h). The isoprene emission from B. crassifolia in the dry season was comparable to the emission in the wet season, whereas isoprene emission from C. vitifolium was about a factor of three lower (~43 mgC/g/h). Biogenic emission inventories show that isoprenoids are the most prominent and best-studied compounds. The standard emission rates of isoprene and monoterpenes of the measured savanna trees were in the lower end of the range found in the literature. The emission of other biogenic VOCs has been sparsely investigated, but in general, the standard emissions from trees studied here were within the range observed in previous investigations. The biomass burning study comprised the measurement of VOCs and other trace-gas emissions of 44 fires from 15 different fuel types, primarily from Africa and Indonesia, in a combustion laboratory. The average sum of emissions (excluding CO2, CO and NO) from African fuels was ~18 g(VOC)/kg. Six of the ten most important emissions were oxygenated VOCs. Acetic acid was the major emission, followed by methanol and formaldehyde. The emission of methane was of the same order as the methanol emission (~5 g/kg), and that of nitrogen-containing compounds was ~1 g/kg. An estimate of the VOC source from biomass burning of savannas and grasslands worldwide suggests that the sum of emissions is about 56 Tg/yr, of which 34 Tg correspond to oxygenated VOCs, 14 Tg to unsaturated and aromatic compounds, 5 Tg to methane and 3 Tg to N-compounds. The estimated emissions of CO, CO2 and NO are 216, 5117 and 9.4 Tg/yr, respectively. The emission factors reported here for Indonesian fuels are the first results of laboratory fires using Indonesian fuels. Acetic acid was the highest organic emission, followed by acetol, a compound not previously reported in smoke, methane, mass 97 (tentatively identified as furfural, dimethylfuran and ethylfuran), and methanol. The sum of total emissions of Indonesian fuels was 91 g/kg, which is 5 times higher than the emissions from African fuels. The results of this study reinforces the importance of oxygenated compounds. Due to the vast area covered by tropical savannas worldwide, the biogenic and biomass burning emission of methanol and other oxygenated compounds may be important for the regional and even global tropospheric chemistry.
Resumo:
The present dissertation focuses on the measurement of nonmethane organic carbon compounds (NMOC) and their exchange by biosphere-atmosphere interactions. To access the accuracy, precision, and reproducibility of NMOC analysis, two intercomparison experiments were carried out during the present study. These experiments comprised the sampling of NMOCs on graphitised carbon blacks, followed by gas-chromatographic analysis. Furthermore, they comprised the sampling of short chain carbonyl compounds on solid phase extraction cartridges and their analysis by high pressure liquid chromatography. To investigate the exchange of NMOCs between vegetation and the atmosphere, plant enclosure studies were performed on two European deciduous tree species. These measurements were conducted during two consecutive summer seasons by utilisation of the above specified techniques on sunlit and shaded leaves of European beech (Fagus sylvatica L., monoterpene emitter) and sunlit leaves of English oak (Quercus robur L., isoprene emitter). According to its broad geographical distribution, the impact of European beech on the European monoterpene budget was characterized by a model simulation. Complementary an instrument was developed, that is capable of measuring the amount of total NMOC that is exchanged by biosphere-atmosphere interactions. The instrument was tested under laboratory conditions and was evaluated versus an independent method performing branch enclosure measurements.
Resumo:
In dieser Arbeit wurden im Rahmen der UTOPIHAN- und HOHPEX04-Projekte Peroxid- und Formaldehydmessungen in der Troposphäre durchgeführt und wissenschaftlich interpretiert. Die Messungen während UTOPIHAN fanden dabei an Bord eines für Forschungszwecke umgerüsteten Flugzeuges (Learjet 35A) im Wesentlichen in der freien, insbesondere in der oberen Troposphäre über Europa statt. Die Messungen während HOHPEX04 waren hingegen als Bodenmessungen an der sich abwechselnd in der bodennahen Grenzschicht und in von dieser Schicht entkoppelten Luftmassen liegenden Bergstation Hohenpeißenberg (bayerisches Voralpenland) konzipiert. Um eine quantitative Auswertbarkeit der Messungen sicherzustellen, wurden die verwendeten, auf chemischer Derivatisierung und fluorimetrischer Detektion basierenden Messgeräte AL 2001CA (Peroxide) und AL 4021 (Formaldehyd) (AEROLASER) genau charakterisiert. Dabei wurde speziell die bekannte Ozoninterferenz beider Geräte in einer großen Zahl von Laborexperimenten mit unterschiedlichen Randbedingungen bezüglich Wasserdampf- und Kohlenwasserstoffgehalt der Luft untersucht. Für beide Verbindungen wurden Höhen- sowie Breitenprofile erstellt und mit Ergebnissen eines 3D-Chemie-Transport-Modells (CTM) sowie früherer Studien verglichen. In einem weiteren Kapitel werden Ergebnisse einer quantitativen Studie zum Einfluss hochreichender Konvektion auf das HCHO-Budget in der mittleren und oberen Troposphäre präsentiert. Diese Studie kommt zu dem Schluss, dass der rasche Aufwärtstransport von Vorläufergasen von HCHO und HOx wie Methanol, Aceton und sogar gut löslicher Spurengase wie CH3OOH beziehungsweise H2O2 aus der Grenzschicht einen signifikanten, auf Grund der längeren Lebensdauer von NOx über mehrere Tage andauernden und damit großräumigen Einfluss auf die Budgets von HCHO, HOx und auch O3 in der oberen Troposphäre haben kann. Die Befunde der Studie legen desweiteren nahe, dass fehlerhafte Modellvorhersagen für die NO-Mischungsverhältnisse in der Tropopausenregion, die zum Beispiel mit Mängeln des Modells bezüglich der Höhe der Konvektion und des Stratosphären-Troposphären-Austauschs zu tun haben, hauptverantwortlich sind für gefundene Differenzen zwischen Messdaten und dem verwendeten 3D-Chemie-Transport-Modell. Um die Signifikanz der Aussagen zu erhöhen, wurde eine Sensitivitätsstudie durchgeführt, in der die Konzentration einiger chemischer Verbindungen sowie die Photolyseraten variiert wurden. Eine weitere Studie zum Einfluss verschiedener Parameter auf das CH3OOH/H2O2-Verhältnis kommt zu dem Schluss, dass dieses Verhältnis keinen idealen Indikator für Wolkenprozessierung von Luftmassen darstellt, während eine signifikant positive Abweichung vom H2O2/H2O-Verhältnis in der oberen Troposphäre ein guter Indikator für rasch aufwärts transportierte Luftmassen sein kann. Im Rahmen dieser Studie werden auch Höhen- und Breitenprofile des CH3OOH/H2O2-Verhältnisses diskutiert. In einer letzten Untersuchung zu HCHO-Messungen am Observatorium Hohenpeißenberg im Sommer 2004 werden für die in zwei Windrichtungssektoren eingeteilten Daten Korrelationen anderer Spurengase wie O3, PAN, CO, NOy und Isopren mit HCHO interpretiert. In diesem Zusammenhang wird auch versucht, den beobachteten Tagesgang von HCHO zu erklären.
Resumo:
Volatile organic compounds play a critical role in ozone formation and drive the chemistry of the atmosphere, together with OH radicals. The simplest volatile organic compound methane is a climatologically important greenhouse gas, and plays a key role in regulating water vapour in the stratosphere and hydroxyl radicals in the troposphere. The OH radical is the most important atmospheric oxidant and knowledge of the atmospheric OH sink, together with the OH source and ambient OH concentrations is essential for understanding the oxidative capacity of the atmosphere. Oceanic emission and / or uptake of methanol, acetone, acetaldehyde, isoprene and dimethyl sulphide (DMS) was characterized as a function of photosynthetically active radiation (PAR) and a suite of biological parameters, in a mesocosm experiment conducted in the Norwegian fjord. High frequency (ca. 1 minute-1) methane measurements were performed using a gas chromatograph - flame ionization detector (GC-FID) in the boreal forests of Finland and the tropical forests of Suriname. A new on-line method (Comparative Reactivity Method - CRM) was developed to directly measure the total OH reactivity (sink) of ambient air. It was observed that under conditions of high biological activity and a PAR of ~ 450 μmol photons m-2 s-1, the ocean acted as a net source of acetone. However, if either of these criteria was not fulfilled then the ocean acted as a net sink of acetone. This new insight into the biogeochemical cycling of acetone at the ocean-air interface has helped to resolve discrepancies from earlier works such as Jacob et al. (2002) who reported the ocean to be a net acetone source (27 Tg yr-1) and Marandino et al. (2005) who reported the ocean to be a net sink of acetone (- 48 Tg yr-1). The ocean acted as net source of isoprene, DMS and acetaldehyde but net sink of methanol. Based on these findings, it is recommended that compound specific PAR and biological dependency be used for estimating the influence of the global ocean on atmospheric VOC budgets. Methane was observed to accumulate within the nocturnal boundary layer, clearly indicating emissions from the forest ecosystems. There was a remarkable similarity in the time series of the boreal and tropical forest ecosystem. The average of the median mixing ratios during a typical diel cycle were 1.83 μmol mol-1 and 1.74 μmol mol-1 for the boreal forest ecosystem and tropical forest ecosystem respectively. A flux value of (3.62 ± 0.87) x 1011 molecules cm-2 s-1 (or 45.5 ± 11 Tg CH4 yr-1 for global boreal forest area) was derived, which highlights the importance of the boreal forest ecosystem for the global budget of methane (~ 600 Tg yr-1). The newly developed CRM technique has a dynamic range of ~ 4 s-1 to 300 s-1 and accuracy of ± 25 %. The system has been tested and calibrated with several single and mixed hydrocarbon standards showing excellent linearity and accountability with the reactivity of the standards. Field tests at an urban and forest site illustrate the promise of the new method. The results from this study have improved current understanding about VOC emissions and uptake from ocean and forest ecosystems. Moreover, a new technique for directly measuring the total OH reactivity of ambient air has been developed and validated, which will be a valuable addition to the existing suite of atmospheric measurement techniques.
Resumo:
The land-atmosphere exchange of atmospheric trace gases is sensitive to meteorological conditions and climate change. It contributes in turn to the atmospheric radiative forcing through its effects on tropospheric chemistry. The interactions between the hydrological cycle and atmospheric processes are intricate and often involve different levels of feedbacks. The Earth system model EMAC is used in this thesis to assess the direct role of the land surface components of the terrestrial hydrological cycle in the emissions, deposition and transport of key trace gases that control tropospheric chemistry. It is also used to examine its indirect role in changing the tropospheric chemical composition through the feedbacks between the atmospheric and the terrestrial branches of the hydrological cycle. Selected features of the hydrological cycle in EMAC are evaluated using observations from different data sources. The interactions between precipitation and the water vapor column, from the atmospheric branch of the hydrological cycle, and evapotranspiration, from its terrestrial branch, are assessed specially for tropical regions. The impacts of changes in the land surface hydrology on surface exchanges and the oxidizing chemistry of the atmosphere are assessed through two sensitivity simulations. In the first, a new parametrization for rainfall interception in the densely vegetated areas in the tropics is implemented, and its effects are assessed. The second study involves the application of a soil moisture forcing that replaces the model calculated soil moisture. Both experiments have a large impact on the local hydrological cycle, dry deposition of soluble and insoluble gases, emissions of isoprene through changes in surface temperature and the Planetary Boundary Layer height. Additionally the soil moisture forcing causes changes in local vertical transport and large-scale circulation. The changes in trace gas exchanges affect the oxidation capacity of the atmosphere through changes in OH, O$_3$, NO$_x$ concentrations.
Resumo:
Diese Arbeit beschäftigt sich mit den Unterschieden zwischen linearen und verzweigten Oligomeren/Polymeren mit praktisch gleichem chemischem Bau. Untersucht wurden eine Reihe von ungeladenen Polymeren in Hinsicht auf deren Wechselwirkungsparameter mit Lö-sungsmitteln sowie peripher geladene Dendrimere im Hinblick auf deren Staudingerindices in Wasser. Bei den ungeladenen Oligomeren/Polymeren handelt es sich um Oligoisoprene, Polygly-cerine und Oligo-Dimetylsiloxane. Vor den thermodynamischen Messungen war es notwen-dig, die verzweigten Produkte durch diskontinuierliche Spinn-Fraktionierung von linearen Bestandteilen zu befreien. In diesem Zusammenhang wurden die Phasendiagramme der Aus-gangsproben und der fraktionierten Proben bestimmt und mit denen der entsprechenden linea-ren Polymeren verglichen. Die Ergebnisse zeigen deutliche Einflüsse der Molekularchitektur, wobei Mischungen aus linearen und verzweigten Polymeren plus niedermolekularen Flüssig-keiten infolge der Unverträglichkeit der hochmolekularen Komponenten ungewöhnliches Verhalten zeigen. Die Flory-Huggins Wechselwirkungsparameter von linearen und verzweigten Polyme-ren wurden mit Hilfe von Dampfdruckmessungen (Headspace-Gaschromatographie) und dampfdruckosmometrischen Messungen bei unterschiedlichen Temperaturen bestimmt. Es zeigt sich, daß die -Werte in komplexer Weise von der Konzentration abhängen und mit einem Ansatz nach Wolf (Gleichung 26 und 31) quantitativ modellierbar sind. Allgemein gilt die folgende Ungleichung: bra > lin. Die Untersuchungen bezüglich der Staudingerindeces von Polyelektrolyten wurden an vier Generationen von peripher geladenen Dendrimeren durchgeführt. Die Ergebnisse zeigen, dass die [ ] Werte mit zunehmender Generation deutlich sinken. Bei der 1. Generation ver-hält sich das Dendrimer noch sehr ähnlich wie lineare Polyelektrolyte. Mit steigender Zahl der Generationen nimmt der Staudingerindex trotz zunehmendem Molekulargewicht deutlich ab, da der Polyelektrolyteffekt (Aufweitung der Knäuel durch elektrostatische Wechselwirkung) an Bedeutung verliert. Der Grund dafür liegt in einer Zunahme des Abstands der Ladungen zur Hauptkette und der Tatsache, dass der Zahl der Ladungen pro Molekül bei konstantem n entsprechend einer quadratischen Reihe zu (2, 4, 8, 16) zunimmt. Wie aus Messungen an der ETH Zürich bekannt ist, verhalten sich ungeladene Dendrimere in organischen Lösungsmit-teln wie die Lösungen von linearem Polystyrol.
Resumo:
Beständig werden Spurenstoffe in die Atmosphäre emittiert, die ihren Ursprung in biogenen oder anthropogenen Quellen haben. Daß es dennoch im allgemeinen nicht zu einer Anreicherung bis hin zu toxischen Konzentrationen kommt, liegt an dem Vermögen der Atmosphäre sich durch Oxidationsprozesse selbst zu reinigen. Eine wichtige Aufgabe kommt dabei dem Hydroxylradikal OH zu, welches tagsüber die Oxidationskapazität der Atmosphäre bestimmt. Hierbei spielen die tropischen Regionen mit einer der höchsten OH-Produktionsraten eine zentrale Rolle. Gleichzeitig sind die tropischen Regenwälder eine bedeutende globale Quelle für Kohlenwasserstoffe, die durch Reaktion mit OH-Radikalen dessen Konzentration und damit die Oxidationskapazität der Atmosphäre herabsetzen. Während der GABRIEL-Meßkampagne 2005 im äquatorialen Südamerika wurde der Einfluß der Regenwaldemissionen auf das HOx-Budget (HOx = OH+HO2) untersucht. Zu diesem Zweck wurde das Radikalmeßinstrument HORUS entwickelt. Im Rahmen dieser Arbeit wurden unterschiedliche Komponenten des Gerätes optimiert, der Meßaufbau ins Flugzeug integriert und Methoden zur Kalibrierung entwickelt. Bei der internationalen Vergleichskampagne HOxComp2005 zeigte HORUS seine Eignung zur Messung von troposphärischen OH- und HO2-Radikalen.rnrnDie durchgeführten HOx-Messungen während der GABRIEL-Meßkampagne sind die ersten ihrer Art, die über einem tropischen Regenwald stattgefunden haben. Im Gegensatz zu den Vorhersagen globaler Modelle wurden unerwartet hohe OH- und HO2-Konzentrationen in der planetaren Grenzschicht des tropischen Regenwalds beobachtet. Der Vergleich der berechneten OH-Produktions- und Verlustraten, die aus dem umfangreichen Datensatz von GABRIEL ermittelt wurden, zeigte, daß hierbei eine wichtige OH-Quelle unberücksichtigt blieb. Mit Hilfe des Boxmodells MECCA, in welchem die gemessenen Daten als Randbedingungen in die Simulationen eingingen, wurden die modellierten OH- und HO2- Konzentrationen im Gleichgewichtszustand den beobachteten Konzentrationen gegenübergestellt. Luftmassen der freien Troposphäre und der maritimen Grenzschicht zeigten eine gute Übereinstimmung zwischen Messung und Modell. Über dem tropischen Regenwald jedoch wurden die beobachteten HOx-Konzentrationen in der planetaren Grenzschicht durch das Modell, vor allem am Nachmittag, signifikant unterschätzt. Dabei lag die Diskrepanz zwischen den beobachteten und simulierten Konzentrationen bei einem mittleren Wert von OHobs/OHmod = 12.2 ± 3.5 und HO2obs/HO2mod = 4.1 ± 1.4. Die Abweichung zwischen Messung und Modell korrelieren hierbei mit der Isoprenkonzentration. Während für niedrige Isoprenmischungsverhältnisse, wie sie über dem Ozean oder in Höhen > 3 km vorherrschten, die Beobachtungen mit den Simulationen innerhalb eines Faktors 1.6±0.7 übereinstimmten, nahm die Unterschätzung durch das Modell für steigende Isoprenmischungsverhältnisse > 200 pptV über dem tropischen Regenwald zu.rnrnDer kondensierte chemische Mechanismus von MECCA wurde mit der ausführlichen Isoprenchemie des ”Master Chemical Mechanism“ überprüft, welches vergleichbare HOx-Konzentrationen lieferte. OH-Simulationen, durchgeführt mit der gemessenen HO2-Konzentration als zusätzliche Randbedingung, zeigten, daß die Konversion zwischen HO2 und OH innerhalb des Modells nicht ausreichend ist. Durch Vernachlässigung der gesamten Isoprenchemie konnte dagegen eine Übereinstimmung zwischen Modell und Messung erreicht werden. Eine OH-Quelle in der gleichen Größenordnung wie die OH-Senke durch Isopren, ist somit zur Beschreibung der beobachteten OH-Konzentration notwendig. Reaktionsmechanismen, die innerhalb der Isoprenchemie die gleiche Anzahl an OH-Radikalen erzeugen wie sie verbrauchen, könnten eine mögliche Ursache sein. Unterschiedliche zusätzliche Reaktionen wurden in die Isoprenabbaumechanismen des Modells implementiert, die zur Erhöhung der OH-Quellstärke führen sollten. Diese bewirkten eine Zunahme der simulierten HO2-Konzentrationen um einen maximalen Faktor von 5 für OH und 2 für HO2. Es wird eine OH-Zyklierungswahrscheinlichkeit r von bis zu 94% gefordert, wie sie für die GABRIEL-Messungen erreicht wurde. Die geringe OH-Zyklierungswahrscheinlichkeit von 38% des Modells zeigte, daß wichtige Zyklierungsvorgänge im chemischen Mechanismus bislang nicht berücksichtigt werden. Zusätzliche Zyklierungsreaktionen innerhalb des Isoprenmechanismus, die auch unter niedrigen NO-Konzentrationen zur Rückbildung von OHRadikalen führen, könnten eine Erklärung für die über dem Regenwald beobachteten hohen OH-Konzentration liefern.rn
Resumo:
In dieser Arbeit wurden die OH-Radikalausbeuten beider Doppelbindungen von alpha-Phellandren, alpha-Terpinen, Limonen und Terpinolen bei der Ozonolyse getrennt voneinander bestimmt. Dabei wurde sich die hohe zeitliche Auflösung des PTR-MS zunutze gemacht. Es wurden die OH-Radikale mittels Cyclohexan abgefangen und aus dem daraus gebildeten Cyclohexanon die OH-Radikalausbeute berechnet. Dadurch konnten zum ersten Mal die OH-Radikalausbeuten der langsamer reagierenden Doppelbindung bestimmt werden. Es ergaben sich für alpha-Phellandren 8%11% (±3%), alpha-Terpinen 12%14% (±4%), Limonen 7%10% (±3%) und für Terpinolen 39%48% (±14%). Desweiteren wurde eine theoretische Diskussion über den Reaktionsmechanismus der Ozonolyse und dem daraus gebildetem Criegee-Intermediat durchgeführt. Dadurch konnten die OH-Radikalausbeuten erklärt werden und eine Voraussage über die OH-Radikalausbeute bei anderen Verbindungen ist mit diesen Überlegungen möglich. In einer Messkampagne in Paris konnten verschiedene VOCs und andere atmosphärisch relevante Komponenten wie Ozon, CO, NO2 und NO gemessen werden. Aus diesen Daten wurde zum einen ein Datenpaket in Igor gefertigt, welches die Interpretation der Daten erleichtern sollte. Zum anderen wurden die Daten mit einem PMF-Model analysiert.Durch die Analyse verschiedener Komponenten konnte die Frage beantwortet werden, ob die Lösungsmittelindustrie in und um Paris einen großen Einfluss auf die Konzentrationen gewisser Komponenten in der Luft hat. Über die Korrelation von Benzol und Toluol mit schwarzem Kohlenstoff und den typischen Tagesverlauf mit zwei Konzentrationsmaxima dieser Komponenten konnte gezeigt werden, dass als Hauptquelle diese beiden Stoffe nur der Straßenverkehr infrage kommt. Desweiteren konnte gezeigt werden, dass die Luftmassen die Paris erreichen einen großen Einfluss auf die Konzentration gewisser Komponenten in der Luft haben. Dadurch konnte gut zwischen lokalen Quellen und weit transportierten VOCs unterschieden werden. Schließlich konnten über das PFM-Model ein Großteil der in Paris gemessenen Substanzen in sieben unterschiedliche Quellen eingeteilt werden und deren prozentualer Einfluss während ozeanischer Luftmassen und kontinentalen Luftmassen bestimmt werden. Um Bestandteile von organischem Aerosol mithilfe eines PTR-MS und dessen schonender Ionisationstechnik detektieren zu können, wurde erfolgreich ein Einlass für das PTR-MS entwickelt der es ermöglicht neben den Messungen von VOCs in der Gasphase auch organisches Aerosol zu sammeln, desorbieren und zu detektieren. Zu Testen des neuen Einlasses wurden verschiedene Laborexperimente durchgeführt und es wurde eine Messkampagne in Cabauw (nahe Utrecht, NL) durchgeführt. Die Labortests des neuen Einlasses zeigen, dass es möglich ist organisches Aerosol und VOCs (Aerosol Precurser) in der Gasphase mit einem einzelnen Instrument zu messen. Dazu wurden in einer Smog Chamber Isopren, alpha-Pinen, Limonen und beta-Caryophyllen jeweils mit Ozon zur Reaktion gebracht. Die Messungen in der Gasphase zeigten, dass verschiedene Komponenten wie gewohnt mit hoher Zeitauflösung durch das PTR-MS detektiert werden konnten. Die Messungen des Aerosols zeigten, dass es möglich ist, viele der aus den Reaktionen bekannten Produkte direkt oder mit geringer Fragmentation zu detektieren. Die Messkampagne in Cabauw zeigte, dass es mit diesem Einlass möglich ist über einen langen Zeitraum Aerosol und VOCs mit nur einem Instrument zu messen. Die Gasphasenmessungen sind unbeeinflusst von den Modifikationen, die an dem PTR-MS und der Driftröhre vorgenommen werden mussten um Aerosol detektieren zu können. Desweiteren konnte gezeigt werden, dass sich natürliches organisches Aerosol von Aerosol aus einer Smog Chamber im Dampfdruck unterscheidet. Deswegen muss man vorsichtig sein, falls man diese zwei Aerosolarten miteinander vergleichen will.
Resumo:
Die Vegetation ist die wichtigste Quelle von organischen flüchtigen Verbindungen (auf Englisch volatile organic compounds,VOCs), die einen bemerkenswerten Einfluss auf der Chemie und Physik der Atmosphäre haben. VOCs beeinflussen die oxidative Kapazität der Atmosphäre und tragen zu der Bildung und zum Wachstum von sekundären organischen Aerosolen bei, welche einerseits eine Streuung und Reflektierung der Energie verursachen und andererseits sich an der Bildung und Entwicklung von Wolken beteiligen. Ziel dieser Arbeit war die Beschreibung und der Vergleich von VOC Emissionen aus Pflanzen aus zwei verschiedenen Ökosystemen: Mediterranes Ökosystem und Tropisches Ökosystem. Für diese Aufgabe wurden gewöhnliche Pflanzen von beiden Ökosystemen untersucht. Siebzehn Pflanzenspezies aus der Mittelmeergebiet, welches bekannt ist für seine Vielfalt an VOC emittierenden Pflanzen, wurden in die Untersuchungen einbezogen. Im Gegensatz zum mediterranen Ökosystem sind nur wenig Information verfügbar über VOC Emissionen aus Blättern tropischer Baumspezies. Vor diesem Hintergrund wurden sechsundzwanzig Baumspezies aus verschiedenen Ökotypen des Amazonasbeckens (Terra firme, Várzea und Igapó) wurden auf VOC Emissionen auf Blattebene mit einem Küvetten-System untersucht. Analysen von flüchtigen organischen Verbindungen wurden online mit PTR-MS und offline mittels Sammlung auf entsprechenden Adsorbern (Kartuschen) und nachfolgender GC-FID Analyse untersucht. Die höchsten Emissionen wurden für Isoprene beobachtete, gefolgt durch Monoterpene, Methanol und Aceton. Die meisten Mittelmeer Spezies emittierten eine hohe Vielfalt an Monoterpenspezies, hingegen zeigten nur fünf tropische Pflanzenspezies eine Monoterpene mit einen sehr konservativen Emissionsprofil (α-Pinen>Limonen>Sabinen >ß-Pinen). Mittelmeerpflanzen zeigten zusätzlich Emissionen von Sesquiterpenen, während bei der Pflanzen des Amazonas Beckens keine Sesquiterpenemissionen gefunden wurden. Dieser letzte Befund könnte aber auch durch eine niedrigere Sensitivität des Messsystems während der Arbeiten im Amazonasgebiet erklärt werden. Zusätzlich zu den Isoprenoidemissionen waren Methanolemissionen als Indikator für Wachtumsvorgänge sehr verbreitet in den meisten Pflanzenspezies aus tropischen und mediterranen Gebieten. Einige Pflanzenspezies beider Ökosystemen zeigten Acetonemissionen. rnrnVOC Emissionen werde durch eine große Vielfalt an biotischen und abiotischen Faktoren wie Lichtintensität, Temperatur, CO2 und Trockenheit beeinflusst. Ein anderer, öfter übersehener Faktor, der aber sehr wichtig ist für das Amazonas Becken, ist die regelmäßige Überflutung. In dieser Untersuchung wir fanden heraus, dass am Anfang einer Wurzelanoxie, die durch die Überflutung verursacht wurde, Ethanol und Acetaldehyd emittiert werden können, vor allem in Pflanzenspezies, die schlechter an eine unzureichende Sauerstoffversorgung bei Flutung adaptiert sind, wie z.B. Vatairea guianensis. Die Spezies Hevea spruceana, welche besser an Überflutung adaptiert ist, könnte möglicherweise der gebildete Ethanol sofort remetabolisieren ohne es zu emittieren. Nach einer langen Periode einer Überflutung konnte allerdings keine Emission mehr beobachtet werden, was auf eine vollständige Adaptation mit zunehmender Dauer schließen lässt. Als Reaktion auf den ausgelösten Stress können Isoprenoidemissionen ebenfalls kurzfristig nach einigen Tage an Überflutung zunehmen, fallen dann aber dann nach einer langen Periode zusammen mit der Photosynthese, Transpiration und stomatäre Leitfähigkeit deutlich ab.rnrnPflanzen Ontogenese ist anscheinend von Bedeutung für die Qualität und Quantität von VOC Emissionen. Aus diesem Grund wurden junge und erwachsene Blätter einiger gut charakterisierten Pflanzen Spezies aus dem Mittelmeerraum auf VOC Emissionen untersucht. Standard Emissionsfaktoren von Isopren waren niedriger in jungen Blättern als in erwachsene Blätter. Hingegen wurden höhere Monoterpen- und Sesquiterpenemissionen in jungen Blätter einiger Pflanzenspezies gefunden. Dieser Befund deutet auf eine potentielle Rolle dieser VOCs als Abwehrkomponenten gegen Pflanzenfresser oder Pathogene bei jungen Blätter hin. In einigen Fällen variierte auch die Zusammensetzung der Monoterpen- und Sesquiterpenspezies bei jungen und erwachsenen Blättern. Methanolemissionen waren, wie erwartet, höher in jungen Blättern als in ausgewachsenen Blättern, was mit der Demethylierung von Pectin bei der Zellwandreifung erklärt werden kann. Diese Befunde zu Änderungen der Emissionskapazität der Vegetation können für zukünftige Modellierungen herangezogen werden. rn
Resumo:
Biogene flüchtige organische Verbindungen (BFOV) werden in großen Mengen aus terrestrischenrnÖkosystemen, insbesondere aus Wäldern und Wiesen, in die untere Troposphäre emittiert. Austausch-rnFlüsse von BFOVs sind in der troposphärischen Chemie wichtig, weil sie eine bedeutende Rolle in derrnOzon- und Aerosolbildung haben. Trotzdem bleiben die zeitliche und räumliche Änderung der BFOVrnEmissionen und ihre Rolle in Bildung und Wachstum von Aerosolen ungewiss.rnDer Fokus dieser Arbeit liegt auf der in-situ Anwendung der Protonen Transfer ReaktionsrnMassenspektrometrie (PTR-MS) und der Messung von biogenen flüchtigen organischen Verbindungen inrnnordländischen, gemäßigten und tropischen Waldökosystemen während drei unterschiedlicherrnFeldmesskampagnen. Der Hauptvorteil der PTR-MS-Technik liegt in der hohen Messungsfrequenz,rnwodurch eine eventuelle Änderung in der Atmosphäre durch Transport, Vermischung und Chemiernonline beobachtet werden kann. Die PTR-MS-Messungen wurden zweimal am Boden aus und einmalrnvon einem Forschungsflugzug durchgeführt.rnIn Kapitel 3 werden die PTR-MS-Daten, gesammelt während der Flugmesskampagne über demrntropischen Regenwald, vorgelegt. Diese Studie zeigt den Belang der Grenzschichtdynamik für diernVerteilung von Spurengasen mittels eines eindimensionalen Säule - Chemie und KlimaModells (SCM).rnDer Tagesablauf von Isopren zeigte zwischen 14:00 und 16:15 Uhr lokaler Zeit einen Mittelwert vonrn5.4 ppbv auf der Höhe der Baumspitzen und von 3.3 ppbv über 300 m Höhe. Dies deutet darauf hin, dassrnsowohl der turbulente Austausch als auch die hohe Reaktionsfähigkeit von Isopren mit den OxidantienrnOH und Ozon eine wichtige Rolle spielen. Nach dem Ausgleich von chemischen Verlusten undrnEntrainment (Ein- und Ausmischung von Luft an der Grenzschicht), wurde ein Fluss vonrn8.4 mg Isopren m-2h-1 unter teilweise bewölkten Bedingungen für den tropischen Regenwald in derrnGuyanregion abgeschätzt. Dies entspricht einem täglichen Emissionsfluss von 28 mg Isopren prornQuadratmeter.rnIm Kapitel 4 werden die Messungen, welche auf einer Hügellage in gemäßigter Breite inrnsüddeutschland stattgefunden haben, diskutiert. Bei diesem Standort ist die Grenzschicht nachts unter diernStandorthöhe abgefallen, was den Einsatzort von Emissionen abgesondert hatte. Während diernGrenzschicht morgens wieder über die Höhe des Einsatzortes anstieg, konnten die eingeschlossenenrnnächtlichen Emissionen innerhalb der bodennahen Schicht beobachtet werden. Außerdem wurde einrndeutlicher Anstieg von flüchtigen organischen Verbindungen gemessen, wenn die Luftmassen überrnMünchen geführt wurden oder wenn verschmutzte Luftmassen aus dem Po-Tal über die Alpen nachrnDeutschland transportiert wurden. Daten von dieser Kampagne wurden genutzt, um die Änderungen inrndem Mischungsverhältnis der flüchtigen organischen Verbindungen, verbunden mit dem Durchfluss vonrnwarmen und kalten Wetterfronten sowie bei Regen zu untersuchen.rnIm Kapitel 5 werden PTR-MS-Messungen aus dem nördlichen Nadelwaldgürtel beschrieben. Starkernnächtliche Inversionen mit einer niedrigen Windgeschwindigkeit fingen die Emissionen vonrnnahegelegenen Kiefernwäldern und andere BFOV-Quellen ab, was zu hohen nächtlichen BFOVMischverhältnissenrnführte. Partikelereignisse wurden für Tag und Nacht detailliert analysiert. Diernnächtlichen Partikelereignisse erfolgten synchron mit starken extremen von Monoterpenen, obwohl dasrnzweite Ereignis Kernbildung einschloss und nicht mit Schwefelsäure korrelierte. Die MonoterpenrnMischungsverhältnisse von über 16 ppbv waren unerwartet hoch für diese Jahreszeit. NiedrigernWindgeschwindigkeiten und die Auswertung von Rückwärtstrajektorien deuten auf eine konzentrierternQuelle in der Nähe von Hyytiälä hin. Die optische Stereoisomerie von Monoterpenen hat bestätigt, dassrndie Quelle unnatürlich ist, da das Verhältnis von [(+)-α-pinen]/[(−)-α-pinen] viel höher ist als dasrnnatürliches Verhältnis der beiden Enantiomeren.
Resumo:
Durch geologische Prozesse freigesetzte sowie biogen und anthropogen emittierte Gase werden hauptsächlich von der untersten Atmosphärenschicht, der Troposphäre, aufgenommen und abgebaut. Durch in die Troposphä¬re einfallende solare Strahlung wird ein Abbau des Großteils der emittierten Spurengase durch reaktive Radikale initiiert. Der wichtigste Vertreter dieser reaktiven Radikale in der Troposphäre ist das Hydroxylradikal (OH-Radikal), welches im schnellen Gleichgewicht mit Hydroperoxyradikalen (HO2-Radikal) vorliegt, sodass die Summe aus OH- und HO2-Radikalen oft als HOx zusammengefasst wird. HOx-Radikale bilden tagsüber den Hauptteil der Oxidationskapazität der Troposphäre und sind somit verantwortlich für den oxidativen Abbau vieler, auch chemisch und photolytisch stabiler, Spurengase. Daher wird die Oxidationskapazität als Selbstreinigungskraft der Troposphäre verstanden. rnIm Rahmen meiner Arbeit wurde die wissenschaftliche Fragestellung auf die Oxidationskapazität der Troposphäre über Europa fokussiert. Die Höhen- und Breitenverteilung der OH- und HO2-Mischungsverhältnisse und ihre jahreszeitliche Variation wurde während der flugzeuggestützten HOOVER-Kampagnen (HOOVER 1 & 2) charakterisiert, wobei ein Fokus auf der oberen Troposphäre lag. Es wird gezeigt, welchen Einfluss die einfallende Strahlung, die Variation von HOx-Vorläufersubstanzen (wie z. B. Ozon) und die Variation von Substanzen, die das HOx-Gleichgewicht beeinflussen (z. B. Stickstoffmonoxid), auf das HOx-Budget haben. rnEs wird beispielhaft für den Höhenbereich zwischen 8 und 9.5 km gezeigt, dass die Oxidationskapazität in der oberen Troposphäre des Sommers im Ver¬gleich zu der des Herbstes aufgrund von einer verstärkten HO2-Zyklierung im Mittel deutlich erhöht ist (500 %). rnDurch konvektiven Transport werden im Sommer im Gegensatz zum Herbst regelmäßig Luftmassen aus der planetaren Grenzschicht in die obere Troposphäre eingemischt. Daher wurden der konvektive Luftmassentransport und der Einfluss der eingemischten Spurengase auf die Oxidationskapazität der oberen Troposphäre anhand eines konvektiven Elements über Südostdeutschland untersucht. Wie in dieser Arbeit berichtet wird, wurden in den Luftmassen der Ausströmregion mit bis zu 3.5 pmol/mol (Maximum 10 s-Mittelwert) sehr hohe OH-Mischungsverhältnisse gefunden, die aus der HO2-Konversion mit NO gebildet wurden. Das modellierte HOx-Budget zeigt, dass die HOx-Chemie - unter den beobachteten Bedingungen in der Ausströmregion - durch HOx-Zyklierungsreaktionen beherrscht wird. rnDie gemessenen OH-Mischungsverhältnisse in der Ausströmregion liegen etwa um einen Faktor fünf höher, als die während dieses Fluges in der konvektiv unbeeinflussten oberen Troposphäre gemessenen OH-Mischungsverhältnisse. Am Beispiel der NO2- und CH4-Lebensdauer wird ein schnellerer Abbau von Spurengasen aufgrund der erhöhten Oxidationskapazität nachgewiesen. Aus der NO2-Lebensdauer wird abgeschätzt, wie lange die Oxidationskapazität aufgrund des konvektiven Transports von NOx in den Luftmassen des Ausströmgebietes erhöht ist.rnDie während den Kampagnen durchgeführten Messungen wurden genutzt, um Modellberechnungen des vertikalen HOx-Budgets (über Südschweden) und des meridionalen HOx-Budgets zwischen Nordeuropa und Korsika durchzuführen. Es wurde gezeigt, dass das Modell die OH- und HO2-Mischungsverhältnisse im Allgemeinen gut reproduziert (Modell/Messung: OH im Sommer 94 %, HO2 im Sommer 93 % im Herbst 95 %), wohingegen die vergleichsweise kleinen OH-Mischungsverhältnisse im Herbst aufgrund von einer überschätzten H2O2 abhängigen OH-Produktion stark überschätzt wurden (Modell/Messung: 147 %). rnZur Charakterisierung der Oxidationskapazität innerhalb der planetaren Grenzschicht wurden die DOMINO-Kampagnen durchgeführt. Dabei wurde die Zusammensetzung unterschiedlicher Luftmassen untersucht, die aus verschiedenen Herkunftsorten zum Messort transportiert wurden und aufgrund ihres Ursprungs kaum prozessierte bis prozessierte anthropogen emittierte Spurengase enthielten. Zusätzlich enthielt ein Teil der Luftmassen biogen emittierte Spurengase. Komplementäre Messungen ermöglichen die Berechnung der totalen OH-Produktion und den Vergleich mit den bekannten OH-Quellen. Der Vergleich zeigt, dass offenbar wichtige OH-Produktionskanäle durch die gemessenen Spurengase oder die durchgeführten Berechnungen nicht abgebildet werden. Es wird gezeigt, dass die Stärke der unbekannten OH-Quellen, vor allem unter niedrigen NO-Bedingungen, groß ist und mit den Isopren-, RO2- und HO2-Mischungsverhältnissen korreliert.rn