8 resultados para Convective boundary layer
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Ein eindimensionales numerisches Modell der maritimenGrenzschicht (MBL) wurde erweitert, um chemische Reaktionenin der Gasphase, von Aerosolpartikeln und Wolkentropfen zu beschreiben. Ein Schwerpunkt war dabei die Betrachtung derReaktionszyklen von Halogenen. Soweit Ergebnisse vonMesskampagnen zur Verfuegung standen, wurden diese zurValidierung des Modells benutzt. Die Ergebnisse von frueheren Boxmodellstudien konntenbestaetigt werden. Diese zeigten die saeurekatalysierteAktivierung von Brom aus Seesalzaerosolen, die Bedeutung vonHalogenradikalen fuer die Zerstoerung von O3, diepotentielle Rolle von BrO bei der Oxidation von DMS und dievon HOBr und HOCl in der Oxidation von S(IV). Es wurde gezeigt, dass die Beruecksichtigung derVertikalprofile von meteorologischen und chemischen Groessenvon grosser Bedeutung ist. Dies spiegelt sich darin wider,dass Maxima des Saeuregehaltes von Seesalzaerosolen und vonreaktiven Halogenen am Oberrand der MBL gefunden wurden.Darueber hinaus wurde die Bedeutung von Sulfataerosolen beidem aktiven Recyceln von weniger aktiven zu photolysierbarenBromspezies gezeigt. Wolken haben grosse Auswirkungen auf die Evolution und denTagesgang der Halogene. Dies ist nicht auf Wolkenschichtenbeschraenkt. Der Tagesgang der meisten Halogene ist aufgrundeiner erhoehten Aufnahme der chemischen Substanzen in die Fluessigphase veraendert. Diese Ergebnisse betonen dieWichtigkeit der genauen Dokumentation der meteorologischenBedingungen bei Messkampagnen (besonders Wolkenbedeckungsgrad und Fluessigwassergehalt), um dieErgebnisse richtig interpretieren und mit Modellresultatenvergleichen zu koennen. Dieses eindimensionale Modell wurde zusammen mit einemBoxmodell der MBL verwendet, um die Auswirkungen vonSchiffemissionen auf die MBL abzuschaetzen, wobei dieVerduennung der Abgasfahne parameterisiert wurde. DieAuswirkungen der Emissionen sind am staerksten, wenn sie insauberen Gebieten stattfinden, die Hoehe der MBL gering istund das Einmischen von Hintergrundluft schwach ist.Chemische Reaktionen auf Hintergrundaerosolen spielen nureine geringe Rolle. In Ozeangebieten mit schwachemSchiffsverkehr sind die Auswirkungen auf die Chemie der MBL beschraenkt. In staerker befahrenen Gebieten ueberlappensich die Abgasfahnen mehrerer Schiffe und sorgen fuerdeutliche Auswirkungen. Diese Abschaetzung wurde mitSimulationen verglichen, bei denen die Emissionen alskontinuierliche Quellen behandelt wurden, wie das inglobalen Chemiemodellen der Fall ist. Wenn die Entwicklungder Abgasfahne beruecksichtigt wird, sind die Auswirkungendeutlich geringer da die Lebenszeit der Abgase in der erstenPhase nach Emission deutlich reduziert ist.
Resumo:
Iodine chemistry plays an important role in the tropospheric ozone depletion and the new particle formation in the Marine Boundary Layer (MBL). The sources, reaction pathways, and the sinks of iodine are investigated using lab experiments and field observations. The aims of this work are, firstly, to develop analytical methods for iodine measurements of marine aerosol samples especially for iodine speciation in the soluble iodine; secondly, to apply the analytical methods in field collected aerosol samples, and to estimate the characteristics of aerosol iodine in the MBL. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) was the technique used for iodine measurements. Offline methods using water extraction and Tetra-methyl-ammonium-hydroxide (TMAH) extraction were applied to measure total soluble iodine (TSI) and total insoluble iodine (TII) in the marine aerosol samples. External standard calibration and isotope dilution analysis (IDA) were both conducted for iodine quantification and the limits of detection (LODs) were both 0.1 μg L-1 for TSI and TII measurements. Online couplings of Ion Chromatography (IC)-ICP-MS and Gel electrophoresis (GE)-ICP-MS were both developed for soluble iodine speciation. Anion exchange columns were adopted for IC-ICP-MS systems. Iodide, iodate, and unknown signal(s) were observed in these methods. Iodide and iodate were separated successfully and the LODs were 0.1 and 0.5 μg L-1, respectively. Unknown signals were soluble organic iodine species (SOI) and quantified by the calibration curve of iodide, but not clearly identified and quantified yet. These analytical methods were all applied to the iodine measurements of marine aerosol samples from the worldwide filed campaigns. The TSI and TII concentrations (medians) in PM2.5 were found to be 240.87 pmol m-3 and 105.37 pmol m-3 at Mace Head, west coast of Ireland, as well as 119.10 pmol m-3 and 97.88 pmol m-3 in the cruise campaign over the North Atlantic Ocean, during June – July 2006. Inorganic iodine, namely iodide and iodate, was the minor iodine fraction in both campaigns, accounting for 7.3% (median) and 5.8% (median) in PM2.5 iodine at Mace Head and over the North Atlantic Ocean, respectively. Iodide concentrations were higher than iodate in most of the samples. In the contrast, more than 90% of TSI was SOI and the SOI concentration was correlated significantly with the iodide concentration. The correlation coefficients (R2) were both higher than 0.5 at Mace Head and in the first leg of the cruise. Size fractionated aerosol samples collected by 5 stage Berner impactor cascade sampler showed similar proportions of inorganic and organic iodine. Significant correlations were obtained in the particle size ranges of 0.25 – 0.71 μm and 0.71 – 2.0 μm between SOI and iodide, and better correlations were found in sunny days. TSI and iodide existed mainly in fine particle size range (< 2.0 μm) and iodate resided in coarse range (2.0 – 10 μm). Aerosol iodine was suggested to be related to the primary iodine release in the tidal zone. Natural meteorological conditions such as solar radiation, raining etc were observed to have influence on the aerosol iodine. During the ship campaign over the North Atlantic Ocean (January – February 2007), the TSI concentrations (medians) ranged 35.14 – 60.63 pmol m-3 among the 5 stages. Likewise, SOI was found to be the most abundant iodine fraction in TSI with a median of 98.6%. Significant correlation also presented between SOI and iodide in the size range of 2.0 – 5.9 μm. Higher iodate concentration was again found in the higher particle size range, similar to that at Mace Head. Airmass transport from the biogenic bloom region and the Antarctic ice front sector was observed to play an important role in aerosol iodine enhancement. The TSI concentrations observed along the 30,000 km long cruise round trip from East Asia to Antarctica during November 2005 – March 2006 were much lower than in the other campaigns, with a median of 6.51 pmol m-3. Approximately 70% of the TSI was SOI on average. The abundances of inorganic iodine including iodine and iodide were less than 30% of TSI. The median value of iodide was 1.49 pmol m-3, which was more than four fold higher than that of iodate (median, 0.28 pmol m-3). Spatial variation indicated highest aerosol iodine appearing in the tropical area. Iodine level was considerably lower in coastal Antarctica with the TSI median of 3.22 pmol m-3. However, airmass transport from the ice front sector was correlated with the enhance TSI level, suggesting the unrevealed source of iodine in the polar region. In addition, significant correlation between SOI and iodide was also shown in this campaign. A global distribution in aerosol was shown in the field campaigns in this work. SOI was verified globally ubiquitous due to the presence in the different sampling locations and its high proportion in TSI in the marine aerosols. The correlations between SOI and iodide were obtained not only in different locations but also in different seasons, implying the possible mechanism of iodide production through SOI decomposition. Nevertheless, future studies are needed for improving the current understanding of iodine chemistry in the MBL (e.g. SOI identification and quantification as well as the update modeling involving organic matters).
Resumo:
This PhD thesis is embedded into the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) and investigates the radiative transfer through Arctic boundary-layer mixed-phase (ABM) clouds. For this purpose airborne spectral solar radiation measurements and simulations of the solar and thermal infrared radiative transfer have been performed. This work reports on measurements with the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer) conducted in the framework of ASTAR in April 2007 close to Svalbard. For ASTAR the SMART-Albedometer was extended to measure spectral radiance. The development and calibration of the radiance measurements are described in this work. In combination with in situ measurements of cloud particle properties provided by the Laboratoire de M¶et¶eorologie Physique (LaMP) and simultaneous airborne lidar measurements by the Alfred Wegener Institute for Polar and Marine Research (AWI) ABM clouds were sampled. The SMART-Albedometer measurements were used to retrieve the cloud thermodynamic phase by three different approaches. A comparison of these results with the in situ and lidar measurements is presented in two case studies. Beside the dominating mixed-phase clouds pure ice clouds were found in cloud gaps and at the edge of a large cloud field. Furthermore the vertical distribution of ice crystals within ABM clouds was investigated. It was found that ice crystals at cloud top are necessary to describe the observed SMART-Albedometer measurements. The impact of ice crystals on the radiative forcing of ABM clouds is in vestigated by extensive radiative transfer simulations. The solar and net radiative forcing was found to depend on the ice crystal size, shape and the mixing ratio of ice crystals and liquid water droplets.
Resumo:
Die bedeutendste Folge der Luftverschmutzung ist eine erhöhte Konzentration an Ozon (O3) in der Troposphäre innerhalb der letzten 150 Jahre. Ozon ist ein photochemisches Oxidationsmittel und ein Treibhausgas, das als wichtigste Vorstufe des Hydroxyradikals OH die Oxidationskraft der Atmosphäre stark beeinflusst. Um die Oxidationskraft der Atmosphäre und ihren Einfluss auf das Klima verstehen zu können, ist es von großer Bedeutung ein detailliertes Wissen über die Photochemie des Ozons und seiner Vorläufer, den Stickoxiden (NOx), in der Troposphäre zu besitzen. Dies erfordert das Verstehen der Bildungs- und Abbaumechanismen von Ozon und seiner Vorläufer. Als eine für den chemischen Ozonabbau wichtige Region kann die vom Menschen weitgehend unberührte marine Grenzschicht (Marine boundary layer (MBL)) angesehen werden. Bisher wurden für diese Region jedoch kaum Spurengasmessungen durchgeführt, und so sind die dort ablaufenden photochemischen Prozesse wenig untersucht. Da etwa 70 % der Erdoberfläche mit Ozeanen bedeckt sind, können die in der marinen Granzschicht ablaufenden Prozesse als signifikant für die gesamte Atmosphäre angesehen werden. Dies macht eine genaue Untersuchung dieser Region interessant. Um die photochemische Produktion und den Abbau von Ozon abschätzen zu können und den Einfluss antrophogener Emissionen auf troposphärisches Ozon zu quantifizieren, sind aktuelle Messergebnisse von NOx im pptv-Bereich für diese Region erforderlich. Die notwendigen Messungen von NO, NO2, O3, JNO2, J(O1D), HO2, OH, ROx sowie einiger meteorologischer Parameter wurden während der Fahrt des französischen Forschungsschiffes Marion-Dufresne auf dem südlichen Atlantik (28°S-57°S, 46°W-34°E) im März 2007 durchgeführt. Dabei sind für NO und NO2 die bisher niedrigsten gemessenen Werte zu verzeichnen. Die während der Messcampagne gewonnen Daten wurden hinsichtlich Ihrer Übereinstimmung mit den Bedingungen des photochemischen stationären Gleichgewichts (photochemical steady state (PSS)) überprüft. Dabei konnte eine Abweichung vom PSS festgestellt werden, welche unter Bedingungen niedriger NOx-Konzentrationen (5 bis 25pptv) einen unerwarteten Trend im Leighton-Verhältnis bewirkt, der abhängig vom NOx Mischungsverhältnis und der JNO2 Intensität ist. Signifikante Abweichungen vom Verhältnis liegen bei einer Zunahme der JNO2 Intensität vor. Diese Ergebnisse zeigen, dass die Abweichung vom PSS nicht beim Minimum der NOx-Konzentrationen und der JNO2 Werte liegt, so wie es in bisherigen theoretischen Studien dargelegt wurde und können als Hinweis auf weitere photochemische Prozesse bei höheren JNO2-Werten in einem System mit niedrigem NOx verstanden werden. Das wichtigste Ergebnis dieser Untersuchung, ist die Verifizierung des Leighton-Verhältnisses, das zur Charakterisierung des PSS dient, bei sehr geringen NOx-Konzentrationen in der MBL. Die bei dieser Doktorarbeit gewonnenen Erkenntnisse beweisen, dass unter den Bedingungen der marinen Granzschicht rein photochemischer Abbau von Ozon stattfindet und als Hauptursache hierfür während des Tages die Photolyse gilt. Mit Hilfe der gemessenen Parameter wurde der kritische NO-Level auf Werte zwischen 5 und 9 pptv abgeschätzt, wobei diese Werte im Vergleich zu bisherigen Studien vergleichsweise niedrig sind. Möglicherweise bedeutet dies, dass das Ozon Produktion/ Abbau-Potential des südlichen Atlantiks deutlich stärker auf die Verfügbarkeit von NO reagiert, als es in anderen Regionen der Fall ist. Im Rahmen der Doktorarbeit wurde desweiteren ein direkter Vergleich der gemessenen Spezies mit dem Modelergebnis eines 3-dimensionalen Zirkulationsmodel zur Simulation atmosphären chemischer Prozesse (EMAC) entlang der exakten Schiffsstrecke durchgeführt. Um die Übereinstimmung der Messergebnisse mit dem bisherigen Verständnis der atmosphärischen Radikalchemie zu überprüfen, wurde ein Gleichgewichtspunktmodel entwickelt, das die während der Überfahrt erhaltenen Daten für Berechungen verwendet. Ein Vergleich zwischen der gemessenen und der modellierten ROx Konzentrationen in einer Umgebung mit niedrigem NOx zeigt, dass die herkömmliche Theorie zur Reproduktion der Beobachtungen unzureichend ist. Die möglichen Gründe hierfür und die Folgen werden in dieser Doktorarbeit diskutiert.
Resumo:
Reactive halogen compounds are known to play an important role in a wide variety of atmospheric processes such as atmospheric oxidation capacity and coastal new particle formation. In this work, novel analytical approaches combining diffusion denuder/impinger sampling techniques with gas chromatographic–mass spectrometric (GC–MS) determination are developed to measure activated chlorine compounds (HOCl and Cl2), activated bromine compounds (HOBr, Br2, BrCl, and BrI), activated iodine compounds (HOI and ICl), and molecular iodine (I2). The denuder/GC–MS methods have been used to field measurements in the marine boundary layer (MBL). High mixing ratios (of the order of 100 ppt) of activated halogen compounds and I2 are observed in the coastal MBL in Ireland, which explains the ozone destruction observed. The emission of I2 is found to correlate inversely with tidal height and correlate positively with the levels of O3 in the surrounding air. In addition the release is found to be dominated by algae species compositions and biomass density, which proves the “hot-spot” hypothesis of atmospheric iodine chemistry. The observations of elevated I2 concentrations substantially support the existence of higher concentrations of littoral iodine oxides and thus the connection to the strong ultra-fine particle formation events in the coastal MBL.
Resumo:
A numerical model for studying the influences of deep convective cloud systems on photochemistry was developed based on a non-hydrostatic meteorological model and chemistry from a global chemistry transport model. The transport of trace gases, the scavenging of soluble trace gases, and the influences of lightning produced nitrogen oxides (NOx=NO+NO2) on the local ozone-related photochemistry were investigated in a multi-day case study for an oceanic region located in the tropical western Pacific. Model runs considering influences of large scale flows, previously neglected in multi-day cloud resolving and single column model studies of tracer transport, yielded that the influence of the mesoscale subsidence (between clouds) on trace gas transport was considerably overestimated in these studies. The simulated vertical transport and scavenging of highly soluble tracers were found to depend on the initial profiles, reconciling contrasting results from two previous studies. Influences of the modeled uptake of trace gases by hydrometeors in the liquid and the ice phase were studied in some detail for a small number of atmospheric trace gases and novel aspects concerning the role of the retention coefficient (i.e. the fraction of a dissolved trace gas that is retained in the ice phase upon freezing) on the vertical transport of highly soluble gases were illuminated. Including lightning NOx production inside a 500 km 2-D model domain was found to be important for the NOx budget and caused small to moderate changes in the domain averaged ozone concentrations. A number of sensitivity studies yielded that the fraction of lightning associated NOx which was lost through photochemical reactions in the vicinity of the lightning source was considerable, but strongly depended on assumptions about the magnitude and the altitude of the lightning NOx source. In contrast to a suggestion from an earlier study, it was argued that the near zero upper tropospheric ozone mixing ratios which were observed close to the study region were most probably not caused by the formation of NO associated with lightning. Instead, it was argued in agreement with suggestions from other studies that the deep convective transport of ozone-poor air masses from the relatively unpolluted marine boundary layer, which have most likely been advected horizontally over relatively large distances (both before and after encountering deep convection) probably played a role. In particular, it was suggested that the ozone profiles observed during CEPEX (Central Equatorial Pacific Experiment) were strongly influenced by the deep convection and the larger scale flow which are associated with the intra-seasonal oscillation.
Resumo:
Ozon (O3) ist in der Atmosphäre ein wichtiges Oxidanz und Treibhausgas. Während die höchsten Konzentrationen in der Stratosphäre beobachtet werden und die vor der gefährlichen UV-Strahlung schützende Ozonschicht bilden, können sich signifikante Änderungen der Ozon-Konzentration in der Region der Tropopause auf das Klima der Erde auswirken. Des Weiteren ist Ozon eine der Hauptquellen für das Hydroxylradikal (OH) und nimmt damit entscheidend Einfluss auf die Oxidationskraft der Atmosphäre. Der konvektive Transport von Ozon und seinen Vorläufergasen aus Regionen nahe der Erdoberfläche in die freie Troposphäre beeinflusst das Budget dieser Spezies in der Tropopausenregion.rnDie Datengrundlage der Studie in der vorliegenden Arbeit basiert auf den flugzeuggetragenen Messkampagnen GABRIEL 2005 (Suriname, Südamerika) sowie HOOVER I 2006 und HOOVER II 2007 (beide in Europa). Mit dem zur Verfügung stehenden Datensatz wird das Ozonbudget in der freien, unbelasteten Hintergrundatmosphäre und in der durch hochreichende Konvektion gestörten, oberen Troposphäre untersucht. Anhand der auf in-situ Messungen von O3, NO, OH, HO2 und dem aktinischen Strahlungsfluss basierten Berechnung der Netto-Ozonproduktionsrate (NOPR) werden für das Messgebiet Ozontendenzen in der unbelasteten Troposphäre abgeleitet und mit Simulationen des globalen Chemie-Transport-Modells MATCH-MPIC verglichen. Mit Hilfe zweier Fallstudien in den Tropen in Südamerika und den mittleren Breiten in Europa werden die Auswirkungen von hochreichender Konvektion auf die obere Troposphäre quantifiziert.rnDie Ergebnisse zeigen für die Grenzschicht in niedrigen und mittleren Breiten eine eindeutige Tendenz zur Produktion von Ozon, was für den tropischen Regenwald in der Messregion nicht der allgemeinen Erwartung entsprach, nach der diese Region durch die Zerstörung von Ozon charakterisiert sein sollte. In der oberen Troposphäre ab etwa 7 km wird für die beiden Regionen eine leichte Tendenz zur Ozonproduktion beobachtet. Signifikante Unterschiede zeigen die Ergebnisse für die mittlere Troposphäre. Während die Tropen in dieser Region durch eine eindeutige Tendenz zur Zerstörung von Ozon charakterisiert sind, lässt sich über den mittleren Breiten zwar eine hohe photochemische Aktivität aber keine derart klare Tendenz feststellen. Die hohen Breiten zeichnen sich durch eine neutrale Troposphäre in Bezug auf die Ozontendenz aus und weisen kaum photochemische Aktivität auf. Der Vergleich dieser Ergebnisse mit dem MATCH-MPIC Modell zeigt in weiten Teilen der Messregionen eine grundlegende Übereinstimmung in der Tendenz zur Produktion oder Zerstörung von Ozon. Die absoluten Werte werden vom Modell aber generell unterschätzt. Signifikante Unterschiede zwischen in-situ Daten und Modellsimulationen werden in der Grenzschicht über dem tropischen Regenwald identifiziert.rnDer Einfluss der Konvektion ist durch eine signifikant erhöhte NOPR gekennzeichnet. In dieser Arbeit wird in den Tropen mit einem Median-Wert von 0.20 ppbv h−1 eine um den Faktor 3.6 erhöhte NOPR im Vergleich zur ungestörten oberen Troposphäre abgeschätzt. In den mittleren Breiten führt die um eine Größenordnung höhere NO-Konzentration zu einem Wert von 1.89 ppbv h−1, was einer Überhöhung um einen Faktor 6.5 im Vergleich zum ungestörten Zustand entspricht. Diese Ergebnisse zeigen für beide Regionen in der oberen Troposphäre eine erhöhte Ozonproduktion als Folge konvektiver Aktivität. rnrnHochreichende Konvektion ist zudem ein sehr effektiver Mechanismus für den Vertikaltransport aus der Grenzschicht in die obere Troposphäre. Die schnelle Hebung in konvektiven Wolken führt bei Spurengasen mit Quellen an der Erdoberfläche zu einer Erhöhung ihrer Konzentration in der oberen Troposphäre. Die hochgradig löslichen Spurenstoffe Formaldehyd (HCHO) und Wasserstoffperoxid (H2O2) sind wichtige Vorläufergase der HOx-Radikale. Es wird angenommen, dass sie aufgrund ihrer Löslichkeit in Gewitterwolken effektiv ausgewaschen werden.rnIn der vorliegenden Arbeit wird eine Fallstudie von hochreichender Konvektion im Rahmen des HOOVER II Projekts im Sommer 2007 analysiert. Am 19.07.2007 entwickelten sich am Nachmittag am Südostrand eines in nordöstlicher Richtung ziehenden mesoskaligen konvektiven Systems drei zunächst isolierte konvektive Zellen. Flugzeuggetragene Messungen in der Aus- und der Einströmregion einer dieser Gewitterzellen stellen einen exzellenten Datensatz bereit, um die Auswirkungen von hochreichender Konvektion auf die Verteilung verschiedener Spurengase in der oberen Troposphäre zu untersuchen. Der Vergleich der Konzentrationen von Kohlenstoffmonoxid (CO) und Methan (CH4) zwischen der oberen Troposphäre und der Grenzschicht deutet auf einen nahezu unverdünnten Transport dieser langlebigen Spezies in der konvektiven Zelle hin. Die Verhältnisse betragen (0.94±0.04) für CO und (0.99±0.01) für CH4. Für die löslichen Spezies HCHO und H2O2 beträgt dieses Verhältnis in der Ausströmregion (0.55±0.09) bzw. (0.61±0.08). Dies ist ein Indiz dafür, dass diese Spezies nicht so effektiv ausgewaschen werden wie angenommen. Zum besseren Verständnis des Einflusses der Konvektion auf die Budgets dieser Spezies in der oberen Troposphäre wurden im Rahmen dieser Arbeit Boxmodell-Studien für den Beitrag der photochemischen Produktion in der Ausströmregion durchgeführt, wobei die gemessenen Spezies und Photolysefrequenzen als Randbedingungen dienten. Aus den Budgetbetrachtungen für HCHO und H2O2 wird eine Auswascheffizienz von (67±24) % für HCHO und (41±18) % für H2O2 abgeschätzt. Das für H2O2 überraschende Ergebnis lässt darauf schließen, dass dieses Molekül in einer Gewitterwolke deutlich effektiver transportiert werden kann, als aufgrund seiner hohen Löslichkeit aus der Henry-Konstanten zu erwarten wäre. Das Ausgasen von gelöstem H2O2 beim Gefrieren eines Wolkentropfens, d.h. ein Retentionskoeffizient kleiner 1, ist ein möglicher Mechanismus, der zum beobachteten Mischungsverhältnis dieser löslichen Spezies in der Ausströmregion beitragen kann.
Resumo:
Durch geologische Prozesse freigesetzte sowie biogen und anthropogen emittierte Gase werden hauptsächlich von der untersten Atmosphärenschicht, der Troposphäre, aufgenommen und abgebaut. Durch in die Troposphä¬re einfallende solare Strahlung wird ein Abbau des Großteils der emittierten Spurengase durch reaktive Radikale initiiert. Der wichtigste Vertreter dieser reaktiven Radikale in der Troposphäre ist das Hydroxylradikal (OH-Radikal), welches im schnellen Gleichgewicht mit Hydroperoxyradikalen (HO2-Radikal) vorliegt, sodass die Summe aus OH- und HO2-Radikalen oft als HOx zusammengefasst wird. HOx-Radikale bilden tagsüber den Hauptteil der Oxidationskapazität der Troposphäre und sind somit verantwortlich für den oxidativen Abbau vieler, auch chemisch und photolytisch stabiler, Spurengase. Daher wird die Oxidationskapazität als Selbstreinigungskraft der Troposphäre verstanden. rnIm Rahmen meiner Arbeit wurde die wissenschaftliche Fragestellung auf die Oxidationskapazität der Troposphäre über Europa fokussiert. Die Höhen- und Breitenverteilung der OH- und HO2-Mischungsverhältnisse und ihre jahreszeitliche Variation wurde während der flugzeuggestützten HOOVER-Kampagnen (HOOVER 1 & 2) charakterisiert, wobei ein Fokus auf der oberen Troposphäre lag. Es wird gezeigt, welchen Einfluss die einfallende Strahlung, die Variation von HOx-Vorläufersubstanzen (wie z. B. Ozon) und die Variation von Substanzen, die das HOx-Gleichgewicht beeinflussen (z. B. Stickstoffmonoxid), auf das HOx-Budget haben. rnEs wird beispielhaft für den Höhenbereich zwischen 8 und 9.5 km gezeigt, dass die Oxidationskapazität in der oberen Troposphäre des Sommers im Ver¬gleich zu der des Herbstes aufgrund von einer verstärkten HO2-Zyklierung im Mittel deutlich erhöht ist (500 %). rnDurch konvektiven Transport werden im Sommer im Gegensatz zum Herbst regelmäßig Luftmassen aus der planetaren Grenzschicht in die obere Troposphäre eingemischt. Daher wurden der konvektive Luftmassentransport und der Einfluss der eingemischten Spurengase auf die Oxidationskapazität der oberen Troposphäre anhand eines konvektiven Elements über Südostdeutschland untersucht. Wie in dieser Arbeit berichtet wird, wurden in den Luftmassen der Ausströmregion mit bis zu 3.5 pmol/mol (Maximum 10 s-Mittelwert) sehr hohe OH-Mischungsverhältnisse gefunden, die aus der HO2-Konversion mit NO gebildet wurden. Das modellierte HOx-Budget zeigt, dass die HOx-Chemie - unter den beobachteten Bedingungen in der Ausströmregion - durch HOx-Zyklierungsreaktionen beherrscht wird. rnDie gemessenen OH-Mischungsverhältnisse in der Ausströmregion liegen etwa um einen Faktor fünf höher, als die während dieses Fluges in der konvektiv unbeeinflussten oberen Troposphäre gemessenen OH-Mischungsverhältnisse. Am Beispiel der NO2- und CH4-Lebensdauer wird ein schnellerer Abbau von Spurengasen aufgrund der erhöhten Oxidationskapazität nachgewiesen. Aus der NO2-Lebensdauer wird abgeschätzt, wie lange die Oxidationskapazität aufgrund des konvektiven Transports von NOx in den Luftmassen des Ausströmgebietes erhöht ist.rnDie während den Kampagnen durchgeführten Messungen wurden genutzt, um Modellberechnungen des vertikalen HOx-Budgets (über Südschweden) und des meridionalen HOx-Budgets zwischen Nordeuropa und Korsika durchzuführen. Es wurde gezeigt, dass das Modell die OH- und HO2-Mischungsverhältnisse im Allgemeinen gut reproduziert (Modell/Messung: OH im Sommer 94 %, HO2 im Sommer 93 % im Herbst 95 %), wohingegen die vergleichsweise kleinen OH-Mischungsverhältnisse im Herbst aufgrund von einer überschätzten H2O2 abhängigen OH-Produktion stark überschätzt wurden (Modell/Messung: 147 %). rnZur Charakterisierung der Oxidationskapazität innerhalb der planetaren Grenzschicht wurden die DOMINO-Kampagnen durchgeführt. Dabei wurde die Zusammensetzung unterschiedlicher Luftmassen untersucht, die aus verschiedenen Herkunftsorten zum Messort transportiert wurden und aufgrund ihres Ursprungs kaum prozessierte bis prozessierte anthropogen emittierte Spurengase enthielten. Zusätzlich enthielt ein Teil der Luftmassen biogen emittierte Spurengase. Komplementäre Messungen ermöglichen die Berechnung der totalen OH-Produktion und den Vergleich mit den bekannten OH-Quellen. Der Vergleich zeigt, dass offenbar wichtige OH-Produktionskanäle durch die gemessenen Spurengase oder die durchgeführten Berechnungen nicht abgebildet werden. Es wird gezeigt, dass die Stärke der unbekannten OH-Quellen, vor allem unter niedrigen NO-Bedingungen, groß ist und mit den Isopren-, RO2- und HO2-Mischungsverhältnissen korreliert.rn