12 resultados para CONDUCTION ELECTRONS
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The research has included the efforts in designing, assembling and structurally and functionally characterizing supramolecular biofunctional architectures for optical biosensing applications. In the first part of the study, a class of interfaces based on the biotin-NeutrAvidin binding matrix for the quantitative control of enzyme surface coverage and activity was developed. Genetically modified ß-lactamase was chosen as a model enzyme and attached to five different types of NeutrAvidin-functionalized chip surfaces through a biotinylated spacer. All matrices are suitable for achieving a controlled enzyme surface density. Data obtained by SPR are in excellent agreement with those derived from optical waveguide measurements. Among the various protein-binding strategies investigated in this study, it was found that stiffness and order between alkanethiol-based SAMs and PEGylated surfaces are very important. Matrix D based on a Nb2O5 coating showed a satisfactory regeneration possibility. The surface-immobilized enzymes were found to be stable and sufficiently active enough for a catalytic activity assay. Many factors, such as the steric crowding effect of surface-attached enzymes, the electrostatic interaction between the negatively charged substrate (Nitrocefin) and the polycationic PLL-g-PEG/PEG-Biotin polymer, mass transport effect, and enzyme orientation, are shown to influence the kinetic parameters of catalytic analysis. Furthermore, a home-built Surface Plasmon Resonance Spectrometer of SPR and a commercial miniature Fiber Optic Absorbance Spectrometer (FOAS), served as a combination set-up for affinity and catalytic biosensor, respectively. The parallel measurements offer the opportunity of on-line activity detection of surface attached enzymes. The immobilized enzyme does not have to be in contact with the catalytic biosensor. The SPR chip can easily be cleaned and used for recycling. Additionally, with regard to the application of FOAS, the integrated SPR technique allows for the quantitative control of the surface density of the enzyme, which is highly relevant for the enzymatic activity. Finally, the miniaturized portable FOAS devices can easily be combined as an add-on device with many other in situ interfacial detection techniques, such as optical waveguide lightmode spectroscopy (OWLS), the quartz crystal microbalance (QCM) measurements, or impedance spectroscopy (IS). Surface plasmon field-enhanced fluorescence spectroscopy (SPFS) allows for an absolute determination of intrinsic rate constants describing the true parameters that control interfacial hybridization. Thus it also allows for a study of the difference of the surface coupling influences between OMCVD gold particles and planar metal films presented in the second part. The multilayer growth process was found to proceed similarly to the way it occurs on planar metal substrates. In contrast to planar bulk metal surfaces, metal colloids exhibit a narrow UV-vis absorption band. This absorption band is observed if the incident photon frequency is resonant with the collective oscillation of the conduction electrons and is known as the localized surface plasmon resonance (LSPR). LSPR excitation results in extremely large molar extinction coefficients, which are due to a combination of both absorption and scattering. When considering metal-enhanced fluorescence we expect the absorption to cause quenching and the scattering to cause enhancement. Our further study will focus on the developing of a detection platform with larger gold particles, which will display a dominant scattering component and enhance the fluorescence signal. Furthermore, the results of sequence-specific detection of DNA hybridization based on OMCVD gold particles provide an excellent application potential for this kind of cheap, simple, and mild preparation protocol applied in this gold fabrication method. In the final chapter, SPFS was used for the in-depth characterizations of the conformational changes of commercial carboxymethyl dextran (CMD) substrate induced by pH and ionic strength variations were studied using surface plasmon resonance spectroscopy. The pH response of CMD is due to the changes in the electrostatics of the system between its protonated and deprotonated forms, while the ionic strength response is attributed from the charge screening effect of the cations that shield the charge of the carboxyl groups and prevent an efficient electrostatic repulsion. Additional studies were performed using SPFS with the aim of fluorophore labeling the carboxymethyl groups. CMD matrices showed typical pH and ionic strength responses, such as high pH and low ionic strength swelling. Furthermore, the effects of the surface charge and the crosslink density of the CMD matrix on the extent of stimuli responses were investigated. The swelling/collapse ratio decreased with decreasing surface concentration of the carboxyl groups and increasing crosslink density. The study of the CMD responses to external and internal variables will provide valuable background information for practical applications.
Resumo:
Verdünnte magnetische Halbleiter (DMS) sind technologisch vielversprechende Materialien mit sowohl ferromagnetischen als auch halbleitenden Eigenschaften. Sie gehören zu den entscheidenden Verbindungen bei der Entwicklung neuartiger Spintronikanwendungen. Bisher scheiterte der technologische Einsatz jedoch daran, dass die Curie Temperatur der meisten magnetischen Halbleiter viel zu niedrig ist. Neue Verbindungen auf Basis von ZnO wie Zn1-xCoxO sollen jedoch Ferromagnetismus oberhalb von Raumtemperatur zeigen. Die theoretischen Grundlagen der magnetischen Wechselwirkungen sind jedoch nicht verstanden und erfordern daher umfangreiche experimentelle Untersuchungen. Im Rahmen dieser Arbeit wurden dünne Filme aus Zn0.95Co0.05O mittels Laserablation hergestellt und bezüglich ihrer magnetischen, elektrischen und strukturellen Eigenschaften untersucht, mit dem Ziel den Ferromagnetismus in diesem Material besser zu verstehen. Dabei kamen verschiedene experimentelle Methoden zum Einsatz: wie Magnetometrie, Röntgendiffraktometrie, Magnetischer Röntgenzirkulardichroismus (XMCD), Elektronenspinresonanz sowie magnetoelektrische Transportmessungen. Bei entsprechend defektfördernden Herstellungsbedingungen zeigen die Proben klare ferromagnetische Eigenschaften oberhalb von Raumtemperatur mit einer Sättigungsmagnetisierung von ca. 2 Bohr Magneton / Co sowie einer Remanenz von bis zu 90%. Elektrische Transportmessungen zeigen zudem einen deutlichen Magnetowiderstand sowie einen anomalen Hall Effekt. Letzterer steigt mit der Probenmagnetisierung und spricht für intrinsischen Ferromagnetismus sowie eine geringe Spinpolarisation. Da der Ferromagnetismus mit höherer Ladungsträgerdichte jedoch verschwindet, ist eine ferromagnetische Wechselwirkung über die Leitungselektronen auszuschließen. Eine genauere Auswertung der magnetoelektrischen Messdaten deutet zudem auf ein leitendes Störstellenband hin, das unter Umständen selbst spinpolarisiert ist. Vieles spricht somit dafür, dass die ferromagnetische Ordnung über magnetische Polaronen zustande kommt. Einige strukturelle und magnetometrische Ergebnisse sowie Elektronenspinresonanzmessungen deuten zudem auf metallische Ausscheidungen in Form von Cobalt Clustern hin, die einen zusätzlichen extrinsischen ferromagnetischen Beitrag liefern, der deutlich größer sein könnte als der intrinsische. Überraschenderweise zeigen XMCD Messungen jedoch, dass Cobalt überhaupt nicht am Ferromagnetismus beteiligt ist. Insgesamt gibt es Anzeichen, dass magnetische Defekte eine entscheidende Rolle hinsichtlich des Magnetismus in Zn0.95Co0.05O spielen.
Resumo:
“Plasmon” is a synonym for collective oscillations of the conduction electrons in a metal nanoparticle (excited by an incoming light wave), which cause strong optical responses like efficient light scattering. The scattering cross-section with respect to the light wavelength depends not only on material, size and shape of the nanoparticle, but also on the refractive index of the embedding medium. For this reason, plasmonic nanoparticles are interesting candidates for sensing applications. Here, two novel setups for rapid spectral investigations of single nanoparticles and different sensing experiments are presented.rnrnPrecisely, the novel setups are based on an optical microscope operated in darkfield modus. For the fast single particle spectroscopy (fastSPS) setup, the entrance pinhole of a coupled spectrometer is replaced by a liquid crystal device (LCD) acting as spatially addressable electronic shutter. This improvement allows the automatic and continuous investigation of several particles in parallel for the first time. The second novel setup (RotPOL) usesrna rotating wedge-shaped polarizer and encodes the full polarization information of each particle within one image, which reveals the symmetry of the particles and their plasmon modes. Both setups are used to observe nanoparticle growth in situ on a single-particle level to extract quantitative data on nanoparticle growth.rnrnUsing the fastSPS setup, I investigate the membrane coating of gold nanorods in aqueous solution and show unequivocally the subsequent detection of protein binding to the membrane. This binding process leads to a spectral shift of the particles resonance due to the higher refractive index of the protein compared to water. Hence, the nanosized addressable sensor platform allows for local analysis of protein interactions with biological membranes as a function of the lateral composition of phase separated membranes.rnrnThe sensitivity on changes in the environmental refractive index depends on the particles’ aspect ratio. On the basis of simulations and experiments, I could present the existence of an optimal aspect ratio range between 3 and 4 for gold nanorods for sensing applications. A further sensitivity increase can only be reached by chemical modifications of the gold nanorods. This can be achieved by synthesizing an additional porous gold cage around the nanorods, resulting in a plasmon sensitivity raise of up to 50 % for those “nanorattles” compared to gold nanorods with the same resonance wavelength. Another possibility isrnto coat the gold nanorods with a thin silver shell. This reduces the single particle’s resonance spectral linewidth about 30 %, which enlarges the resolution of the observable shift. rnrnThis silver coating evokes the interesting effect of reducing the ensemble plasmon linewidth by changing the relation connecting particle shape and plasmon resonance wavelength. This change, I term plasmonic focusing, leads to less variation of resonance wavelengths for the same particle size distribution, which I show experimentally and theoretically.rnrnIn a system of two coupled nanoparticles, the plasmon modes of the transversal and longitudinal axis depend on the refractive index of the environmental solution, but only the latter one is influenced by the interparticle distance. I show that monitoring both modes provides a self-calibrating system, where interparticle distance variations and changes of the environmental refractive index can be determined with high precision.
Resumo:
Die zentrale Funktion des Hauptlichtsammlerkomplexes des Photosystems II, LHCII, besteht in der Absorption von Sonnenlicht und der Bereitstellung von Energie für die photosynthetische Ladungstrennung im Reaktionszentrum des Photosystems. Auch in der Regulation der Photosynthese spielt der LHCII eine wichtige Rolle, da die Energieverteilung zwischen Photosystem I und Photosystem II im Rahmen des sog. „State Transition“-Prozesses über die Verteilung der Lichtsammlerkomplexe zwischen den beiden Photosystemen gesteuert wird. Im Blickfeld des ersten Teils dieser Arbeit stand die konformative Dynamik der N-terminalen Domäne des LHCII, die wahrscheinlich in die Regulation der Lichtsammlung involviert ist. Gemeinsam mit Mitarbeitern des 3. Physikalischen Instituts der Universität Stuttgart wurde an der Etablierung einer Methode zur einzelmolekülspektroskopischen Untersuchung der Dynamik des N-Terminus gearbeitet. Als Messgröße diente der Energietransfer zwischen einem Fluoreszenzfarbstoff, der an die N-terminale Domäne gekoppelt war, und den Chlorophyllen des Komplexes. Die Funktion des LHCII als effiziente Lichtantenne bildete die Grundlage für den zweiten Teil dieser Arbeit. Hier wurde untersucht, in wie weit LHCII als Lichtsammler in eine elektrochemische Solarzelle integriert werden kann. In der potentiellen Solarzelle sollte die Anregungsenergie des LHCII auf Akzeptorfarbstoffe übertragen werden, die in der Folge Elektronen in das Leitungsband einer aus Titandioxid oder Zinndioxid bestehenden porösen Halbleiterelektrode injizierten, auf der Komplexe und Farbstoffe immobilisiert waren.
Resumo:
Polystyrene latex particles modified at the surface with different hydrophilic functional groups were prepared by miniemulsion polymerization and applied to control the crystallization of zinc oxide in aqueous medium. The effects of both latex structure and concentration on the crystal growth, morphology, crystalline structure, and properties of the resulting zinc oxide were analyzed. Depending on the latex additive used, micro- and submicrosized crystals with a broad variety of morphologies were obtained. Among the studied latexes, the carboxyl-derived particles were shown to be a convenient system for further quantitative investigations. In this case, as the additive concentration increases, the aspect ratio of the crystals decreases systematically. Latex particles are assumed to adsorb preferentially onto the fast growing {001} faces of ZnO, interacting with the growth centers and reducing the growth rate in [001]. When zinc oxide is precipitated in the presence of latex, the polymer particles become incorporated into the growing crystals and polymer–inorganic hybrid materials are obtained. These materials are composed of an inorganic and largely undisturbed crystalline matrix in which organic latex particles are embedded. Increasing amounts of latex become incorporated into the growing crystals at increasing overall concentration in the crystallizing system. Photoluminescence (PL) spectra were measured to obtain information on defect centers. Emission spectra of all samples showed a narrow UV peak and a broad band in the green-yellow spectral region. The former emission is attributed to exciton recombination, whereas the latter seems to be related with deep-level donors. Latex appears to be a quencher of the visible emission of zinc oxide. Thus, compared to pure zincite, ZnO–latex hybrid materials show a significantly lower PL intensity in the visible range of the spectrum. Under continuous photoexcitation, a noticeable dynamic behavior of the PL is observed, which can be related to a photodesorption of adsorbed oxygen. These surface-adsorbed oxygen species seem to play a crucial role for the optical properties of the materials and may mediate the tunneling of electrons from the conduction band to preexisting deep-level traps, probably related to intrinsic defects (oxygen vacancies or interstitial zinc). The polymer particles can block the sites where oxygen adsorbs, and the disappearance of the “electron-shuttle” species leads to the observed quenching of the visible emission. Electron paramagnetic resonance (EPR) provided additional information about crystal defects with unpaired electrons. Spectra of all samples exhibit a single signal at g ≈ 1.96, typical for shallow donors. Contrary to the results of other authors, no correlation was possible between the EPR signal and the visible range of PL spectra, which suggests that centers responsible for the visible emission and the EPR signal are different.
Resumo:
In dieser Arbeit wurde die Elektronenemission von Nanopartikeln auf Oberflächen mittels spektroskopischen Photoelektronenmikroskopie untersucht. Speziell wurden metallische Nanocluster untersucht, als selbstorganisierte Ensembles auf Silizium oder Glassubstraten, sowie ferner ein Metall-Chalcogenid (MoS2) Nanoröhren-Prototyp auf Silizium. Der Hauptteil der Untersuchungen war auf die Wechselwirkung von fs-Laserstrahlung mit den Nanopartikeln konzentriert. Die Energie der Lichtquanten war kleiner als die Austrittsarbeit der untersuchten Proben, so dass Ein-Photonen-Photoemission ausgeschlossen werden konnte. Unsere Untersuchungen zeigten, dass ausgehend von einem kontinuierlichen Metallfilm bis hin zu Clusterfilmen ein anderer Emissionsmechanismus konkurrierend zur Multiphotonen-Photoemission auftritt und für kleine Cluster zu dominieren beginnt. Die Natur dieses neuen Mechanismus` wurde durch verschiedenartige Experimente untersucht. Der Übergang von einem kontinuierlichen zu einem Nanopartikelfilm ist begleitet von einer Zunahme des Emissionsstroms von mehr als eine Größenordnung. Die Photoemissions-Intensität wächst mit abnehmender zeitlicher Breite des Laserpulses, aber diese Abhängigkeit wird weniger steil mit sinkender Partikelgröße. Die experimentellen Resultate wurden durch verschiedene Elektronenemissions-Mechanismen erklärt, z.B. Multiphotonen-Photoemission (nPPE), thermionische Emission und thermisch unterstützte nPPE sowie optische Feldemission. Der erste Mechanismus überwiegt für kontinuierliche Filme und Partikel mit Größen oberhalb von mehreren zehn Nanometern, der zweite und dritte für Filme von Nanopartikeln von einer Größe von wenigen Nanometern. Die mikrospektroskopischen Messungen bestätigten den 2PPE-Emissionsmechanismus von dünnen Silberfilmen bei „blauer“ Laseranregung (hν=375-425nm). Das Einsetzen des Ferminiveaus ist relativ scharf und verschiebt sich um 2hν, wenn die Quantenenergie erhöht wird, wogegen es bei „roter“ Laseranregung (hν=750-850nm) deutlich verbreitert ist. Es zeigte sich, dass mit zunehmender Laserleistung die Ausbeute von niederenergetischen Elektronen schwächer zunimmt als die Ausbeute von höherenergetischen Elektronen nahe der Fermikante in einem Spektrum. Das ist ein klarer Hinweis auf eine Koexistenz verschiedener Emissionsmechanismen in einem Spektrum. Um die Größenabhängigkeit des Emissionsverhaltens theoretisch zu verstehen, wurde ein statistischer Zugang zur Lichtabsorption kleiner Metallpartikel abgeleitet und diskutiert. Die Elektronenemissionseigenschaften bei Laseranregung wurden in zusätzlichen Untersuchungen mit einer anderen Anregungsart verglichen, der Passage eines Tunnelstroms durch einen Metall-Clusterfilm nahe der Perkolationsschwelle. Die elektrischen und Emissionseigenschaften von stromtragenden Silberclusterfilmen, welche in einer schmalen Lücke (5-25 µm Breite) zwischen Silberkontakten auf einem Isolator hergestellt wurden, wurden zum ersten Mal mit einem Emissions-Elektronenmikroskop (EEM) untersucht. Die Elektronenemission beginnt im nicht-Ohmschen Bereich der Leitungsstrom-Spannungskurve des Clusterfilms. Wir untersuchten das Verhalten eines einzigen Emissionszentrums im EEM. Es zeigte sich, dass die Emissionszentren in einem stromleitenden Silberclusterfilm Punktquellen für Elektronen sind, welche hohe Emissions-Stromdichten (mehr als 100 A/cm2) tragen können. Die Breite der Energieverteilung der Elektronen von einem einzelnen Emissionszentrum wurde auf etwa 0.5-0.6 eV abgeschätzt. Als Emissionsmechanismus wird die thermionische Emission von dem „steady-state“ heißen Elektronengas in stromdurchflossenen metallischen Partikeln vorgeschlagen. Größenselektierte, einzelne auf Si-Substraten deponierte MoS2-Nanoröhren wurden mit einer Flugzeit-basierten Zweiphotonen-Photoemissions-Spektromikroskopie untersucht. Die Nanoröhren-Spektren wiesen bei fs-Laser Anregung eine erstaunlich hohe Emissionsintensität auf, deutlich höher als die SiOx Substratoberfläche. Dagegen waren die Röhren unsichtbar bei VUV-Anregung bei hν=21.2 eV. Eine ab-initio-Rechnung für einen MoS2-Slab erklärt die hohe Intensität durch eine hohe Dichte freier intermediärer Zustände beim Zweiphotonen-Übergang bei hν=3.1 eV.
Resumo:
This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods.rnrnrnIn the case of the hydrogen storage system lithium amide/imide (LiNH_2/Li_2NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state 1H-NMR chemical shifts was observed. Specifically, the structure of Li_2NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus.rnrnOn the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding network in the material. The results indicate that these water molecules are essential for the effectiveness of proton conduction. A water-mediated Grotthuss mechanism is identified as the main contributor to proton conduction, which agrees with the experimentally observed decay on conductivity for the same material in the absence of water molecules.rnrnThe gain in understanding the microscopic processes and structures present in this materials can help the development of new materials with improved properties, thus contributing to the solution of problems in the implementation of fuel cells.
Resumo:
Die Erzeugung von Elektronenstrahlen hoher Intensität (I$geq$2,mA) und hoher Spinpolarisation (P$geq$85%) ist für die Experimente an den geplanten glqq Linac Ringgrqq Electron--Ion--Collidern (z.B. eRHIC am Brookhaven National Laboratory) unabdingbar, stellt aber zugleich eine enorme Herausforderung dar. Die Photoemission aus ce{GaAs}--basierten Halbleitern wie z.B. den in dieser Arbeit untersuchten GaAlAs/InGaAlAs Quanten--Übergittern zeichnet sich zwar durch eine hohe Brillanz aus, die geringe Quantenausbeute von nur ca. 1% im Bereich maximaler Polarisation erfordert jedoch hohe Laserintensitäten von mehreren Watt pro $text{cm}^{2}$, was erhebliche thermische Probleme verursacht. rnrnIn dieser Arbeit konnte zunächst gezeigt werden, dass die Lebensdauer einer Photokathode mit steigender Laserleistung bzw. Temperatur exponentiell abnimmt. Durch Einbringen eines DBR--Spiegels zwischen die aktive Zone der Photokathode und ihr Substrat wird ein Großteil des ungenutzten Laserlichts wieder aus dem Kristall herausreflektiert und trägt somit nicht zur Erwärmung bei. Gleichzeitig bildet der Spiegel zusammen mit der Grenzfläche zum Vakuum eine Resonator--Struktur aus, die die aktive Zone umschließt. Dadurch kommt es für bestimmte Wellenlängen zu konstruktiver Interferenz und die Absorption in der aktiven Zone erhöht sich. Beide Effekte konnten durch vergleichenden Messungen an Kathoden mit und ohne DBR--Spiegel nachgewiesen werden. Dabei ergibt sich eine gute Übereinstimmung mit der Vorhersage eines Modells, das auf der dielektrischen Funktion der einzelnen Halbleiterstrukturen beruht. Von besonderer praktischer Bedeutung ist, dass die DBR--Kathode für einen gegebenen Photoemissions-strom eine um einen Faktor $geq$,3{,}5 kleinere Erwärmung aufweist. Dies gilt über den gesamten Wellenlängenbereich in dem die Kathode eine hohe Strahlpolarisation (P$>$80%) produzieren kann, auch im Bereich der Resonanz.rnAus zeitaufgelösten Messungen der Ladungsverteilung und Polarisation lassen sich sowohl Rückschlüsse über die Transportmechanismen im Inneren einer Kathode als auch über die Beschaffenheit ihrer Oberfläche ziehen. Im Rahmen dieser Dissertation konnte die Messgeschwindigkeit der verwendeten Apparatur durch den Einbau eines schnelleren Detektors und durch eine Automatisierung der Messprozedur entscheidend vergrößert und die resultierende Zeitauflösung mit jetzt 1{,}2 Pikosekunden annähernd verdoppelt werden.rnrnDie mit diesen Verbesserungen erhaltenen Ergebnisse zeigen, dass sich der Transport der Elektronen in Superlattice--Strukturen stark vom Transport in den bisher untersuchten Bulk--Kristallen unterscheidet. Der Charakter der Bewegung folgt nicht dem Diffusionsmodell, sondern gibt Hinweise auf lokalisierte Zustände, die nahe der Leitungsbandunterkante liegen und Elektronen für kurze Zeit einfangen können. Dadurch hat die Impulsantwort einer Kathode neben einem schnellen Abfall des Signals auch eine größere Zeitkonstante, die selbst nach 30,ps noch ein Signal in der Größenordnung von ca. 5textperthousand der Maximalintensität erzeugt.
Resumo:
Biosensors find wide application in clinical diagnostics, bioprocess control and environmental monitoring. They should not only show high specificity and reproducibility but also a high sensitivity and stability of the signal. Therefore, I introduce a novel sensor technology based on plasmonic nanoparticles which overcomes both of these limitations. Plasmonic nanoparticles exhibit strong absorption and scattering in the visible and near-infrared spectral range. The plasmon resonance, the collective coherent oscillation mode of the conduction band electrons against the positively charged ionic lattice, is sensitive to the local environment of the particle. I monitor these changes in the resonance wavelength by a new dark-field spectroscopy technique. Due to a strong light source and a highly sensitive detector a temporal resolution in the microsecond regime is possible in combination with a high spectral stability. This opens a window to investigate dynamics on the molecular level and to gain knowledge about fundamental biological processes.rnFirst, I investigate adsorption at the non-equilibrium as well as at the equilibrium state. I show the temporal evolution of single adsorption events of fibrinogen on the surface of the sensor on a millisecond timescale. Fibrinogen is a blood plasma protein with a unique shape that plays a central role in blood coagulation and is always involved in cell-biomaterial interactions. Further, I monitor equilibrium coverage fluctuations of sodium dodecyl sulfate and demonstrate a new approach to quantify the characteristic rate constants which is independent of mass transfer interference and long term drifts of the measured signal. This method has been investigated theoretically by Monte-Carlo simulations but so far there has been no sensor technology with a sufficient signal-to-noise ratio.rnSecond, I apply plasmonic nanoparticles as sensors for the determination of diffusion coefficients. Thereby, the sensing volume of a single, immobilized nanorod is used as detection volume. When a diffusing particle enters the detection volume a shift in the resonance wavelength is introduced. As no labeling of the analyte is necessary the hydrodynamic radius and thus the diffusion properties are not altered and can be studied in their natural form. In comparison to the conventional Fluorescence Correlation Spectroscopy technique a volume reduction by a factor of 5000-10000 is reached.
Resumo:
Die biologische Stickstofffixierung durch Molybdän-haltige Nitrogenasen sowie die Erforschung des zugrundeliegenden komplexen Mechanismus (N2-Aktivierung an Metall-Zentren, 6-fache Protonierung und Reduktion, N–N Bindungsspaltung unter Bildung von Ammoniak) ist von erheblichem Interesse. Insbesondere Molybdän-Komplexe wurden bereits erfolgreich als Modellverbindungen für die Untersuchung elementarer Einzelschritte der N2-Aktivierung eingesetzt. Durch die Verwendung von Triamidoamin-Liganden ist es Schrock et al. sogar gelungen mehrere Katalysezyklen zu durchlaufen und einen Mechanismus zu formulieren. Trotz der sterisch anspruchsvollen Substituenten in den Schrock-Komplexen ist die Umsatzrate dieses homogenen Katalysators, aufgrund Komplex-Deaktivierung infolge intermolekularer Reaktionen wie Dimerisierung und Disproportionierung, limitiert. In der vorliegenden Arbeit wurden einige dieser Herausforderungen angegangen und die aktiven Spezies auf einer Festphase immobilisiert, um intermolekulare Reaktionen durch räumliche Isolierung der Komplexe zu unterdrücken.rnEin Polymer-verankertes Analogon des Schrock Nitrido-Molybdän(VI)-Komplexes wurde auf einem neuen Reaktionsweg synthetisiert. Dieser beinhaltet nur einen einzigen Reaktionsschritt, um die funktionelle Gruppe „MoN“ einzuführen. Protonierung des immobilisierten Nitrido-Molybdän(VI)-Komplexes LMoVIN (L = Polymer-verankerter Triamidoamin-Ligand) mit 2,6-Lutidinium liefert den entsprechenden Imido-Molybdän(VI)-Komplex. Durch anschließende Ein-Elektronen-Reduktion mit Cobaltocen wird der Polymer-angebundene Imido-Molybdän(V)-Komplex erhalten, bewiesen durch EPR-Spektroskopie (g1,2,3 = 1.989, 1.929, 1.902). Durch die Immobilisierung und die effektive räumliche Separation der Reaktionszentren auf der Festphase werden bimolekulare Nebenreaktionen, die oft in homogenen Systemen auftreten, unterdrückt. Dies ermöglicht zum ersten Mal die Darstellung des Imido-Molybdän(V)-Intermediates des Schrock-Zyklus.rnEPR-Spektren des als Spin-Label eingeführten immobilisierten Nitrato-Kupfer(II)-Komplexes wurden unter verschiedenen Bedingungen (Lösungsmittel, Temperatur) aufgenommen, wobei sich eine starke Abhängigkeit zwischen der Zugänglichkeit und Reaktivität der immobilisierten Reaktionszentren und der Art des Lösungsmittels zeigte. Somit wurde die Reaktivität von LMoVIN gegenüber Protonen und Elektronen, welches zur Bildung von NH3 führt, unter Verwendung verschiedener Lösungsmittel untersucht und optimiert. Innerhalb des kugelförmigen Polymers verläuft die Protonierung und Reduktion von LMoVIN stufenweise. Aktive Zentren, die sich an der „äußeren Schale“ des Polymers befinden, sind gut zugänglich und reagieren schnell nach H+/e− Zugabe. Aktive Zentren im „Inneren des Polymers“ hingegen sind schlechter zugänglich und zeigen langsame diffusions-kontrollierte Reaktionen, wobei drei H+/e− Schritte gefolgt von einer Ligandenaustausch-Reaktion erforderlich sind, um NH3 freizusetzen: LMoVIN LMoVNH LMoIVNH2 LMoIIINH3 und anschließender Ligandenaustausch führt zur Freisetzung von NH3.rnIn einem weiteren Projekt wurde der Bis(ddpd)-Kupfer(II)-Komplex EPR-spektroskopisch in Hinblick auf Jahn−Teller-Verzerrung und -Dynamik untersucht. Dabei wurden die EPR-Spektren bei variabler Temperatur (70−293 K) aufgenommen. Im Festkörperspektrum bei T < 100 K erscheint der Kupfer(II)-Komplex als gestreckter Oktaeder, wohingegen das EPR-Spektrum bei höheren Temperaturen g-Werte aufzeigt, die einer pseudo-gestauchten oktaedrischen Kupfer(II)-Spezies zuzuordnen sind. Diese Tatsache wird einem intramolekularen dynamischen Jahn−Teller Phänomen zugeschrieben, welcher bei 100 K eingefroren wird.
Resumo:
Plasmonische Metallnanopartikel bündeln, verstärken und beeinflussen Licht auf nanoskopischer Ebene. Diese grundlegende Eigenschaft kommt von koheränten, kollektiven Schwingungen der Leitungsbandelektronen, die von einfallendem Licht resonant angeregt und lokalisierte Oberflächenplasmonenresonanz (LSPR) oder ‚Partikelplasmonen‘ genannt werden. Plasmonen in Metallnanopartikeln wurden bisher z.B. zur Erkennen von pathogenen Biomolekülen, bei der photothermischen Therapie und zur Verbesserung der Effizienz von Solarzellen verwendet. In dieser Arbeit werde ich meinen Fokus auf die Synthese und Funktionalisierung von Goldnanopartikeln zur Anwendung als Sensoren legen.rnrnKürzliche Verbesserungen in der nasschemischen Synthese haben zur Herstellung von Goldnanopartikel mit unterschiedlichen Formen und Größen geführt, die sich in ihren Sensoreigenschaften unterscheiden. Unter den unterschiedlichen Sensorgeometrien sind Goldnanostäbchen die bevorzugte Form zur Biomolekül-Sensorik durch LSPR. Nanostäbchen werden durch eine positiv geladene CTAB-Schicht stabilisiert, die Proteine bei neutralem pH-Wert anziehen kann. Die Adsorption und Desorption von Proteinen an der Nanopartikeloberfläche und damit die Bindungskinetiken von Proteinen kann auf Einzelmolekülebene erforscht werden. Ich zeige hier eine Studie mit hoher örtlicher und zeitlicher Auflösung um einzelne Bindungsereignisse von Fibronectin auf Goldnanostäbchen darzustellen.rnrnGoldnanostäbchen müssen mit spezifischen biologischen Erkennungselementen funktionalisiert werden um eine Analyterkennung oder Proteinwechselwirkung zu erreichen. Ich funktionalisiere Goldnanostäbchen mit kurzen DNA-Sequenzen (Aptamer-Sequenzen und NTA konjugierten Polihymidinen) und habe anhand diese unterschiedlich sensitiven Partikel eine Studie mit verschiedenen Analyten (oder Protein-Protein Wechselwirkungen) erfolgreich durchgeführt.rn rnPlasmonen von Nanopartikel-Clustern koppeln miteinander, was ihre Resonanzenergie ändert. Der kontrollierte Zusammenbau von Nanopartikeln zu Dimeren oder höher geordneten Strukturen wie ‚Core-Satellites‘ können dazu dienen ihre Sensitivität zu erhöhen. Diese Cluster bieten eine hohe Sensitivität auf Grund der Anwesenheit von plasmonischen Hotspots in der Lücke zwischen zwei Partikeln. Die Plasmonkopplung ist ein Phänomen, das abhängig vom Abstand zweier Partikel zueinander ist und bildet somit die Basis von sogenannten Plasmon-Linealen. Ich habe eine Strategie entwickelt um Dimere aus Hsp90 funktionalisierten Goldnanosphären zu bilden. Diese Technik wird nicht durch Ausbleichen oder das Blinken von Farbstoffen limitiert und ich zeige zum ersten Mal wie man dadurch dynamische Proteinkonformationen untersuchen kann.rn
Resumo:
Measurements of the self coupling between bosons are important to test the electroweak sector of the Standard Model (SM). The production of pairs of Z bosons through the s-channel is forbidden in the SM. The presence of physics, beyond the SM, could lead to a deviation of the expected production cross section of pairs of Z bosons due to the so called anomalous Triple Gauge Couplings (aTGC). Proton-proton data collisions at the Large Hadron Collider (LHC) recorded by the ATLAS detector at a center of mass energy of 8 TeV were analyzed corresponding to an integrated luminosity of 20.3 fb-1. Pairs of Z bosons decaying into two electron-positron pairs are searched for in the data sample. The effect of the inclusion of detector regions corresponding to high values of the pseudorapidity was studied to enlarge the phase space available for the measurement of the ZZ production. The number of ZZ candidates was determined and the ZZ production cross section was measured to be: rn7.3±1.0(Stat.)±0.4(Sys.)±0.2(lumi.)pb, which is consistent with the SM expectation value of 7.2±0.3pb. Limits on the aTGCs were derived using the observed yield, which are twice as stringent as previous limits obtained by ATLAS at a center of mass energy of 7 TeV.