12 resultados para Blowup of semi-linear equations
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Wegen der fortschreitenden Miniaturisierung von Halbleiterbauteilen spielen Quanteneffekte eine immer wichtigere Rolle. Quantenphänomene werden gewöhnlich durch kinetische Gleichungen beschrieben, aber manchmal hat eine fluid-dynamische Beschreibung Vorteile: die bessere Nutzbarkeit für numerische Simulationen und die einfachere Vorgabe von Randbedingungen. In dieser Arbeit werden drei Diffusionsgleichungen zweiter und vierter Ordnung untersucht. Der erste Teil behandelt die implizite Zeitdiskretisierung und das Langzeitverhalten einer degenerierten Fokker-Planck-Gleichung. Der zweite Teil der Arbeit besteht aus der Untersuchung des viskosen Quantenhydrodynamischen Modells in einer Raumdimension und dessen Langzeitverhaltens. Im letzten Teil wird die Existenz von Lösungen einer parabolischen Gleichung vierter Ordnung in einer Raumdimension bewiesen, und deren Langzeitverhalten studiert.
Resumo:
Wir haben die linearen und nichtlinearen optischen Eigenschaften von dünnen Schichten und planaren Wellenleitern aus mehreren konjugierten Polymeren (MEH-PPV und P3AT) und Polymeren mit -Elektronen Systemen in der Seitenkette (PVK und PS) untersucht und verglichen. PVK und PS haben relativ kleine Werte des nichtlinearen Brechungsindex n2 bei 532 nm, nämlich (1,2 ± 0,5)10-14 cm2/W und (2,6 ± 0,5) 10-14 cm2/W.rnWir haben die linearen optischen Konstanten von mehreren P3ATs untersucht, insbesondere den Einfluss der Regioregularität und Kettenlänge der Alkylsubstituenten. Wir haben das am besten geeignete Polymere für Wellenleiter Anwendungen identifiziert, welches P3BT-ra genannt ist. Wir haben die linearen optischen Eigenschaften dünner Schichten des P3BT-ra untersucht, die mit Spincoating aus verschiedenen Lösungsmitteln mit unterschiedlichen Siedetemperaturen präparieret wurden. Wir haben festgestellt, dass P3BT-ra Filme aus Toluol-Lösungen die am besten geeigneten Wellenleiter für die intensitätsabhängigen Prismen-Kopplungs Experimente sind, weil diese geringe Wellenleiterdämpfungsverluste bei = 1064 nm haben. rnWir haben die Dispersionen des Wellenleiterdämfungsverlustes gw, des nichtlinearen Brechungsindex n2 und des nichtlinearen Absorptionskoeffizienten 2 von Wellenleitern aus P3BT-ra im Bereich von 700 - 1500 nm gemessen. Wir haben große Werte des nichtlinearen Brechungsindex bis 1,5x10-13 cm2/W bei 1150 nm beobachtet. Wir haben gefunden, dass die Gütenkriterien (“figures of merit“) für rein optische Schalter im Wellenlängebereich 1050 - 1200 nm erfüllt sind. Dieser Bereich entspricht dem niederenergetischen Ausläufer der Zwei-Photonen-Absorption. Die Gütekriterien von P3BT-ra gehören zu den besten der bisher bekannten Werte von konjugierten Polymeren.rnWir haben gefunden, dass P3BT-ra ein vielversprechender Kandidat für integriert-optische Schalter ist, weil es eine gute Kombination aus großer Nichtlinearität dritter Ordnung, geringen Wellenleiterdämpfungverlusten und ausreichender Photostabilität zeigt. rnWir haben einen Vergleich der gemessenen Dispersion von gw, n2 und 2 mit der Theorie durchgeführt. Durch Kurvenanpassung der Dispersion von gw haben wir gefunden, dass Rayleigh-Streuung der dominierende Dämpfungsmechanismus in MEH-PPV und P3BT-ra Wellenleitern ist. Ein quantenmechanischer Ansatz wurde zur Berechnung der nichtlinearen Suszeptibilität dritter Ordnung (3) verwendet, um die gemessenen Spektren von n2 und 2 von P3BT-ra und MEH-PPV zu simulieren. Dies kann erklären, dass sättigbare Absorption und Zwei-Photonen Absorption die hauptsächlichen Effekte sind, welche die Dispersion von n2 und 2 verursachen. rn
Resumo:
The interplay of hydrodynamic and electrostatic forces is of great importance for the understanding of colloidal dispersions. Theoretical descriptions are often based on the so called standard electrokinetic model. This Mean Field approach combines the Stokes equation for the hydrodynamic flow field, the Poisson equation for electrostatics and a continuity equation describing the evolution of the ion concentration fields. In the first part of this thesis a new lattice method is presented in order to efficiently solve the set of non-linear equations for a charge-stabilized colloidal dispersion in the presence of an external electric field. Within this framework, the research is mainly focused on the calculation of the electrophoretic mobility. Since this transport coefficient is independent of the electric field only for small driving, the algorithm is based upon a linearization of the governing equations. The zeroth order is the well known Poisson-Boltzmann theory and the first order is a coupled set of linear equations. Furthermore, this set of equations is divided into several subproblems. A specialized solver for each subproblem is developed, and various tests and applications are discussed for every particular method. Finally, all solvers are combined in an iterative procedure and applied to several interesting questions, for example, the effect of the screening mechanism on the electrophoretic mobility or the charge dependence of the field-induced dipole moment and ion clouds surrounding a weakly charged sphere. In the second part a quantitative data analysis method is developed for a new experimental approach, known as "Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy" (TIR-FCCS). The TIR-FCCS setup is an optical method using fluorescent colloidal particles to analyze the flow field close to a solid-fluid interface. The interpretation of the experimental results requires a theoretical model, which is usually the solution of a convection-diffusion equation. Since an analytic solution is not available due to the form of the flow field and the boundary conditions, an alternative numerical approach is presented. It is based on stochastic methods, i. e. a combination of a Brownian Dynamics algorithm and Monte Carlo techniques. Finally, experimental measurements for a hydrophilic surface are analyzed using this new numerical approach.
Resumo:
Die Zielsetzung der Arbeit besteht darin, neue Ansätze zur Herstellung strukturierter Kompositpartikel in wässrigem Medium zu entwickeln, welche als die Bildung genau definierter heterogener Strukturen in Kolloidsystemen angesehen werden können. Im Allgemeinen wurden zwei verschiedene Herangehensweisen entwickelt, die sich aufgrund des Ursprungs der gebildeten heterogenen Strukturen unterscheiden: Heterogenität oder Homogenität. Der Erste Ansatz basiert auf der Aggregation heterogener Phasen zur Bildung strukturierter Kolloidpartikel mit Heterogenität in der zugrunde liegenden Chemie, während der Zweite Ansatz auf der Bildung heterogener Phasen in Kolloidpartikeln aus homogenen Mischungen heraus durch kontrollierte Phasenseparation beruht.rnIm Detail beschäftigt sich der erste Teil der Dissertation mit einer neuen Herstellungsmethode für teilkristalline Komposit-Kolloidpartikel mit hoher Stabilität basierend auf der Aggregation flüssiger Monomertropfen an teilkristalline Polyacrylnitrilpartikel. Nach der Aggregation wurden hochstabile Dispersionen bestehend aus strukturierten, teilkristallinen Kompositpartikeln durch freie radikalische Polymerisation erhalten, während ein direktes Mischen der PAN Dispersionen mit Methacrylat-Polymerdispersionen zur unmittelbaren Koagulation führte. In Abhängigkeit von der Glastemperatur des Methacrylatpolymers führt die anschließende freie radikalische Polymerisation zur Bildung von Rasberry oder Kern-Schale Partikeln. Die auf diese Weise hergestellten Partikel sind dazu in der Lage, kontinuierliche Filme mit eingebetteten teilkristallinen Phasen zu bilden, welche als Sauerstoffbarriere Anwendung finden können.rnDer zweite Teil der Dissertation beschreibt eine neue Methode zur Herstellung strukturierter Duroplast-Thermoplast Komposit-Kolloidpartikel. Die Bildung eines Duroplastnetzwerks mit einer thermoplastischen Hülle wurde in zwei Schritten durch verschiedene, separate Polymerisationsmechanismen erreicht: Polyaddition und freie radikalische Polymerisation. Es wurden stabile Miniemulsionen erhalten, welche aus Bisphenol-F basiertem Epoxidharz, Phenalkamin-basiertem Härter und Vinlymonomere bestehen. Sie wurden durch Ultraschall mit nachfolgender Härtung bei verschiedenen Temperaturen als sogenannte Seed-Emulsionen hergestellt. Weitere Vinylmonomere wurden hinzugegeben und nachfolgend polymerisiert, was zur Bildung von Kern-Schale, beziehungsweise Duroplast-Thermoplast Kolloidpartikeln führte. Dabei findet in beiden Fällen zwischen der duroplastischen und der thermoplastischen Phase eine chemisch induzierte Phasenseparation statt, welche essenziell für die Bildung heterogener Strukturen ist. Die auf diese Weise hergestellten Kompositpartikel sind dazu in der Lage, transparente Filme zu bilden, welche unter geeigneten Bedingungen deutlich verbesserte mechanische Eigenschaften im Vergleich zu reinen Duroplastfilmen bereitstellen.rn
Resumo:
In dieser Arbeit wird die Synthese von Polyphenylenzylindern (PPZ) und strukturell verwandten Molekülen beschrieben, die in unterschiedlichen Größen und verschiedenartigen Bindungsmustern dargestellt wurden. Aufgrund ihres Aufbaus sind sie direkte Vorläufermoleküle von Kohlenstoffnanoröhren (CNT)s. Ziel war es, zunächst zu untersuchen, ob sich PPZs darstellen lassen. In einem anschließenden Schritt wurde die nasschemische Synthese von CNTs untersucht, die auf diesem Weg bisher noch nicht erreicht werden konnte. Die hier studierten Strukturen führten zu vielversprechenden Ergebnisse auf diesem Weg, da die oxidative Cyclodehydrierung – eine intramolekulare Anellierung – zur Bildung von ca. 50% der notwendigen Bindungen führte.
Resumo:
Über die Liniarität der Teichmüllerschen Modulgruppe des Torus mit zwei Punktierungen. In meiner Arbeit beschäftige ich mich mit Darstellungen der Teichmüllerschen Modulgruppe des Torus mit zwei Punktierungen. Mein Ansatz hierbei ist, die Teichmüllersche Modulgruppe in eine p-adische Liegruppe einzubetten. Sei nun F die von zwei Elementen erzeugte freie Gruppe und Aut(F) die Automorphismengruppe von F. Inhalt des ersten Kapitels ist es nun zu zeigen, daß folgende Aussagen äquivalent sind: - Die Teichmüllersche Modulgruppe des Torus mit zwei Punktierungen ist linear, - Aut(F)ist linear, - F besitzt eine p-Kongruenzstruktur, deren Folgen- glieder von Aut(F) festgehalten werden, also charak- teristisch sind. Im zweiten Kapitel wird unter anderem gezeigt, daß es eine Einbettung einer Untergruppe endlichen Indexes der Aut(F) in die Automorphismengruppe einer einfachen p-adischen Liegruppe gibt. Bisher ist unbekannt, ob die Buraudarstellung treu ist.In dieser Arbeit wird ein unendliches, lineares Gleichungssystem, dessen Lösungen gerade die Koeffizienten der Wörter des Kernes der Buraudarstellung sind, vorgestellt.Im dritten Kapitel wird mit den Methoden des 1.Kapitels gezeigt, daß der Torus mit zwei Punktierungen genau dann linear ist, wenn die Teichmüllersche Modulgruppe der Sphäre mit 5 Punktierungen es auch ist. Bekanntlich ist die 4. Braidgruppe linear. Nun ist aber die 4. Braidgruppe letztlich die Teichmüllersche Modulgruppe der abgeschlossenen Kreisscheibe mit 5 Punktierungen. Wenn man nun deren Randpunkte miteinander identifiziert und anschließend wegläßt, erhält man die 5-fach punktiereSphäre.Mit der eben beschriebenen Abbildung kann man zeigen, daß die Teichmüllersche Modulgruppe der fünffach punktierten Sphäre linear ist.
Resumo:
In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used.
Resumo:
Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.
Resumo:
In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.
Resumo:
The use of linear programming in various areas has increased with the significant improvement of specialized solvers. Linear programs are used as such to model practical problems, or as subroutines in algorithms such as formal proofs or branch-and-cut frameworks. In many situations a certified answer is needed, for example the guarantee that the linear program is feasible or infeasible, or a provably safe bound on its objective value. Most of the available solvers work with floating-point arithmetic and are thus subject to its shortcomings such as rounding errors or underflow, therefore they can deliver incorrect answers. While adequate for some applications, this is unacceptable for critical applications like flight controlling or nuclear plant management due to the potential catastrophic consequences. We propose a method that gives a certified answer whether a linear program is feasible or infeasible, or returns unknown'. The advantage of our method is that it is reasonably fast and rarely answers unknown'. It works by computing a safe solution that is in some way the best possible in the relative interior of the feasible set. To certify the relative interior, we employ exact arithmetic, whose use is nevertheless limited in general to critical places, allowing us to rnremain computationally efficient. Moreover, when certain conditions are fulfilled, our method is able to deliver a provable bound on the objective value of the linear program. We test our algorithm on typical benchmark sets and obtain higher rates of success compared to previous approaches for this problem, while keeping the running times acceptably small. The computed objective value bounds are in most of the cases very close to the known exact objective values. We prove the usability of the method we developed by additionally employing a variant of it in a different scenario, namely to improve the results of a Satisfiability Modulo Theories solver. Our method is used as a black box in the nodes of a branch-and-bound tree to implement conflict learning based on the certificate of infeasibility for linear programs consisting of subsets of linear constraints. The generated conflict clauses are in general small and give good rnprospects for reducing the search space. Compared to other methods we obtain significant improvements in the running time, especially on the large instances.
Resumo:
In vielen Teilgebieten der Mathematik ist es w"{u}nschenswert, die Monodromiegruppe einer homogenen linearen Differenzialgleichung zu verstehen. Es sind nur wenige analytische Methoden zur Berechnung dieser Gruppe bekannt, daher entwickeln wir im ersten Teil dieser Arbeit eine numerische Methode zur Approximation ihrer Erzeuger.rnIm zweiten Abschnitt fassen wir die Grundlagen der Theorie der Uniformisierung Riemannscher Fl"achen und die der arithmetischen Fuchsschen Gruppen zusammen. Auss erdem erkl"aren wir, wie unsere numerische Methode bei der Bestimmung von uniformisierenden Differenzialgleichungen dienlich sein kann. F"ur arithmetische Fuchssche Gruppen mit zwei Erzeugern erhalten wir lokale Daten und freie Parameter von Lam'{e} Gleichungen, welche die zugeh"origen Riemannschen Fl"achen uniformisieren. rnIm dritten Teil geben wir einen kurzen Abriss zur homologischen Spiegelsymmetrie und f"uhren die $widehat{Gamma}$-Klasse ein. Wir erkl"aren wie diese genutzt werden kann, um eine Hodge-theoretische Version der Spiegelsymmetrie f"ur torische Varit"aten zu beweisen. Daraus gewinnen wir Vermutungen "uber die Monodromiegruppe $M$ von Picard-Fuchs Gleichungen von gewissen Familien $f:mathcal{X}rightarrow bbp^1$ von $n$-dimensionalen Calabi-Yau Variet"aten. Diese besagen erstens, dass bez"uglich einer nat"urlichen Basis die Monodromiematrizen in $M$ Eintr"age aus dem K"orper $bbq(zeta(2j+1)/(2 pi i)^{2j+1},j=1,ldots,lfloor (n-1)/2 rfloor)$ haben. Und zweitens, dass sich topologische Invarianten des Spiegelpartners einer generischen Faser von $f:mathcal{X}rightarrow bbp^1$ aus einem speziellen Element von $M$ rekonstruieren lassen. Schliess lich benutzen wir die im ersten Teil entwickelten Methoden zur Verifizierung dieser Vermutungen, vornehmlich in Hinblick auf Dimension drei. Dar"uber hinaus erstellen wir eine Liste von Kandidaten topologischer Invarianten von vermutlich existierenden dreidimensionalen Calabi-Yau Variet"aten mit $h^{1,1}=1$.
Resumo:
Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.