21 resultados para Algebraische Geometrie, Computer Algebra

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Teil: Bekannte Konstruktionen. Die vorliegende Arbeit gibt zunächst einen ausführlichen Überblick über die bisherigen Entwicklungen auf dem klassischen Gebiet der Hyperflächen mit vielen Singularitäten. Die maximale Anzahl mu^n(d) von Singularitäten auf einer Hyperfläche vom Grad d im P^n(C) ist nur in sehr wenigen Fällen bekannt, im P^3(C) beispielsweise nur für d<=6. Abgesehen von solchen Ausnahmen existieren nur obere und untere Schranken. 2. Teil: Neue Konstruktionen. Für kleine Grade d ist es oft möglich, bessere Resultate zu erhalten als jene, die durch allgemeine Schranken gegeben sind. In dieser Arbeit beschreiben wir einige algorithmische Ansätze hierfür, von denen einer Computer Algebra in Charakteristik 0 benutzt. Unsere anderen algorithmischen Methoden basieren auf einer Suche über endlichen Körpern. Das Liften der so experimentell gefundenen Hyperflächen durch Ausnutzung ihrer Geometrie oder Arithmetik liefert beispielsweise eine Fläche vom Grad 7 mit $99$ reellen gewöhnlichen Doppelpunkten und eine Fläche vom Grad 9 mit 226 gewöhnlichen Doppelpunkten. Diese Konstruktionen liefern die ersten unteren Schranken für mu^3(d) für ungeraden Grad d>5, die die allgemeine Schranke übertreffen. Unser Algorithmus hat außerdem das Potential, auf viele weitere Probleme der algebraischen Geometrie angewendet zu werden. Neben diesen algorithmischen Methoden beschreiben wir eine Konstruktion von Hyperflächen vom Grad d im P^n mit vielen A_j-Singularitäten, j>=2. Diese Beispiele, deren Existenz wir mit Hilfe der Theorie der Dessins d'Enfants beweisen, übertreffen die bekannten unteren Schranken in den meisten Fällen und ergeben insbesondere neue asymptotische untere Schranken für j>=2, n>=3. 3. Teil: Visualisierung. Wir beschließen unsere Arbeit mit einer Anwendung unserer neuen Visualisierungs-Software surfex, die die Stärken mehrerer existierender Programme bündelt, auf die Konstruktion affiner Gleichungen aller 45 topologischen Typen reeller kubischer Flächen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing precision of current and future experiments in high-energy physics requires a likewise increase in the accuracy of the calculation of theoretical predictions, in order to find evidence for possible deviations of the generally accepted Standard Model of elementary particles and interactions. Calculating the experimentally measurable cross sections of scattering and decay processes to a higher accuracy directly translates into including higher order radiative corrections in the calculation. The large number of particles and interactions in the full Standard Model results in an exponentially growing number of Feynman diagrams contributing to any given process in higher orders. Additionally, the appearance of multiple independent mass scales makes even the calculation of single diagrams non-trivial. For over two decades now, the only way to cope with these issues has been to rely on the assistance of computers. The aim of the xloops project is to provide the necessary tools to automate the calculation procedures as far as possible, including the generation of the contributing diagrams and the evaluation of the resulting Feynman integrals. The latter is based on the techniques developed in Mainz for solving one- and two-loop diagrams in a general and systematic way using parallel/orthogonal space methods. These techniques involve a considerable amount of symbolic computations. During the development of xloops it was found that conventional computer algebra systems were not a suitable implementation environment. For this reason, a new system called GiNaC has been created, which allows the development of large-scale symbolic applications in an object-oriented fashion within the C++ programming language. This system, which is now also in use for other projects besides xloops, is the main focus of this thesis. The implementation of GiNaC as a C++ library sets it apart from other algebraic systems. Our results prove that a highly efficient symbolic manipulator can be designed in an object-oriented way, and that having a very fine granularity of objects is also feasible. The xloops-related parts of this work consist of a new implementation, based on GiNaC, of functions for calculating one-loop Feynman integrals that already existed in the original xloops program, as well as the addition of supplementary modules belonging to the interface between the library of integral functions and the diagram generator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Über viele Jahre hinweg wurden wieder und wieder Argumente angeführt, die diskreten Räumen gegenüber kontinuierlichen Räumen eine fundamentalere Rolle zusprechen. Unser Zugangzur diskreten Welt wird durch neuere Überlegungen der Nichtkommutativen Geometrie (NKG) bestimmt. Seit ca. 15Jahren gibt es Anstrengungen und auch Fortschritte, Physikmit Hilfe von Nichtkommutativer Geometrie besser zuverstehen. Nur eine von vielen Möglichkeiten ist dieReformulierung des Standardmodells derElementarteilchenphysik. Unter anderem gelingt es, auch denHiggs-Mechanismus geometrisch zu beschreiben. Das Higgs-Feld wird in der NKG in Form eines Zusammenhangs auf einer zweielementigen Menge beschrieben. In der Arbeit werden verschiedene Ziele erreicht:Quantisierung einer nulldimensionalen ,,Raum-Zeit'', konsistente Diskretisierungf'ur Modelle im nichtkommutativen Rahmen.Yang-Mills-Theorien auf einem Punkt mit deformiertemHiggs-Potenzial. Erweiterung auf eine ,,echte''Zwei-Punkte-Raum-Zeit, Abzählen von Feynman-Graphen in einer nulldimensionalen Theorie, Feynman-Regeln. Eine besondere Rolle werden Termini, die in derQuantenfeldtheorie ihren Ursprung haben, gewidmet. In diesemRahmen werden Begriffe frei von Komplikationen diskutiert,die durch etwaige Divergenzen oder Schwierigkeitentechnischer Natur verursacht werden könnten.Eichfixierungen, Geistbeiträge, Slavnov-Taylor-Identität undRenormierung. Iteratives Lösungsverfahren derDyson-Schwinger-Gleichung mit Computeralgebra-Unterstützung,die Renormierungsprozedur berücksichtigt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden Photopionproduktion (PPP) und Elektropionproduktion (EPP) im Rahmen der manifest lorentzinvarianten baryonischen chiralen Störungstheorie untersucht. Dabei werden zwei verschiedene Ansätze verfolgt. Zum einen wird eine Rechnung auf Einschleifenniveau bis zur chiralen Ordnung O(q^4) mit Pionen und Nukleonen als Freiheitsgrade durchgeführt, um die Energieabhängigkeit der Reaktionen über einen möglichst großen Bereich zu beschreiben. Um die Abhängigkeit von der Photonvirtualität in der EPP zu verbessern, werden zum anderen in einer zweiten Rechnung Vektormesonen in die Theorie einbezogen. Diese Rechnung wird bis zur chiralen Ordnung O(q^3) auf Einschleifenniveau durchgeführt. rnrnVon den vier physikalischen Prozessen in PPP und EPP sind nur drei experimentell zugänglich. Untersucht werden diese Reaktionen an mehreren verschiedenen Anlagen, z.B. in Mainz, Bonn oder Saskatoon. Die dort gewonnenen Daten werden hier verwendet, um die Grenzen der chiralen Störungstheorie auszuloten. rnrnDiese Arbeit stellt die erste, vollständige, manifest lorentzinvariante Rechnung in O(q^4) für PPP und EPP, und die erste jemals durchgeführte Rechnung mit Vektormesonen als Freiheitsgrade für diesen Prozess, dar. Neben der Berechnung der physikalischen Observablen wird auch eine Partialwellenzerlegung durchgeführt und die wichtigsten Multipole untersucht. Diese lassen sich aus den gewonnenen Amplituden extrahieren und bieten eine gute Möglichkeit das Nukleon und Resonanzen zu untersuchen. rnrnUm das Matrixelement für die Prozesse berechnen zu können, wurden verschiedene Routinen für das Computeralgebrasystem Mathematica entwickelt, da die Anzahl der zu bestimmenden Diagramme sehr groß ist. Für die Multipolzerlegung werden zwei verschiedene Programme verwendet. Zum einen das bereits existierende Programm XMAID, welches für diese Arbeit entsprechend modifiziert wurde. Zum anderen wurden vergleichbare Routinen für Mathematica entwickelt. Am Ende der Analysen werden die verschiedenen Rechnungen bezüglich ihrer Anwendbarkeit auf PPP und EPP verglichen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Das Standardmodell der elektroschwachen Wechselwirkung hatin den vergangenen Jahrzehnten beachtliche Erfolge erzielt.Die Suche nach

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Das Standardmodell der Elementarteilchenphysik istexperimentell hervorragend bestätigt, hat auf theoretischerSeite jedoch unbefriedigende Aspekte: Zum einen wird derHiggssektor der Theorie von Hand eingefügt, und zum anderenunterscheiden sich die Beschreibung des beobachtetenTeilchenspektrums und der Gravitationfundamental. Diese beiden Nachteile verschwinden, wenn mandas Standardmodell in der Sprache der NichtkommutativenGeometrie formuliert. Ziel hierbei ist es, die Raumzeit der physikalischen Theoriedurch algebraische Daten zu erfassen. Beispielsweise stecktdie volle Information über eine RiemannscheSpinmannigfaltigkeit M in dem Datensatz (A,H,D), den manspektrales Tripel nennt. A ist hierbei die kommutativeAlgebra der differenzierbaren Funktionen auf M, H ist derHilbertraum der quadratintegrablen Spinoren über M und D istder Diracoperator. Mit Hilfe eines solchen Tripels (zu einer nichtkommutativenAlgebra) lassen sich nun sowohl Gravitation als auch dasStandardmodell mit mathematisch ein und demselben Mittelerfassen. In der vorliegenden Arbeit werden nulldimensionale spektraleTripel (die diskreten Raumzeiten entsprechen) zunächstklassifiziert und in Beispielen wird eine Quantisierungsolcher Objekte durchgeführt. Ein Problem der spektralenTripel stellt ihre Beschränkung auf echt RiemannscheMetriken dar. Zu diesem Problem werden Lösungsansätzepräsentiert. Im abschließenden Kapitel der Arbeit wird dersogenannte 'Feynman-Beweis der Maxwellgleichungen' aufnichtkommutative Konfigurationsräume verallgemeinert.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In der Nichtkommutativen Geometrie werden Räume und Strukturen durch Algebren beschrieben. Insbesondere werden hierbei klassische Symmetrien durch Hopf-Algebren und Quantengruppen ausgedrückt bzw. verallgemeinert. Wir zeigen in dieser Arbeit, daß der bekannte Quantendoppeltorus, der die Summe aus einem kommutativen und einem nichtkommutativen 2-Torus ist, nur den Spezialfall einer allgemeineren Konstruktion darstellt, die der Summe aus einem kommutativen und mehreren nichtkommutativen n-Tori eine Hopf-Algebren-Struktur zuordnet. Diese Konstruktion führt zur Definition der Nichtkommutativen Multi-Tori. Die Duale dieser Multi-Tori ist eine Kreuzproduktalgebra, die als Quantisierung von Gruppenorbits interpretiert werden kann. Für den Fall von Wurzeln der Eins erhält man wichtige Klassen von endlich-dimensionalen Kac-Algebren, insbesondere die 8-dim. Kac-Paljutkin-Algebra. Ebenfalls für Wurzeln der Eins kann man die Nichtkommutativen Multi-Tori als Hopf-Galois-Erweiterungen des kommutativen Torus interpretieren, wobei die Rolle der typischen Faser von einer endlich-dimensionalen Hopf-Algebra gespielt wird. Der Nichtkommutative 2-Torus besitzt bekanntlich eine u(1)xu(1)-Symmetrie. Wir zeigen, daß er eine größere Quantengruppen-Symmetrie besitzt, die allerdings nicht auf die Spektralen Tripel des Nichtkommutativen Torus fortgesetzt werden kann.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer-Simulationen von Kolloidalen Fluiden in Beschränkten Geometrien Kolloidale Suspensionen, die einen Phasenübergang aufweisen, zeigen eine Vielfalt an interessanten Effekten, sobald sie auf eine bestimmte Geometrie beschränkt werden, wie zum Beispiel auf zylindrische Poren, sphärische Hohlräume oder auf einen Spalt mit ebenen Wänden. Der Einfluss dieser verschiedenen Geometrietypen sowohl auf das Phasenverhalten als auch auf die Dynamik von Kolloid-Polymer-Mischungen wird mit Hilfe von Computer-Simulationen unter Verwendung des Asakura-Oosawa- Modells, für welches auf Grund der “Depletion”-Kräfte ein Phasenübergang existiert, untersucht. Im Fall von zylindrischen Poren sieht man ein interessantes Phasenverhalten, welches vom eindimensionalen Charakter des Systems hervorgerufen wird. In einer kurzen Pore findet man im Bereich des Phasendiagramms, in dem das System typischerweise entmischt, entweder eine polymerreiche oder eine kolloidreiche Phase vor. Sobald aber die Länge der zylindrischen Pore die typische Korrelationslänge entlang der Zylinderachse überschreitet, bilden sich mehrere quasi-eindimensionale Bereiche der polymerreichen und der kolloidreichen Phase, welche von nun an koexistieren. Diese Untersuchungen helfen das Verhalten von Adsorptionshysteresekurven in entsprechenden Experimenten zu erklären. Wenn das Kolloid-Polymer-Modellsystem auf einen sphärischen Hohlraum eingeschränkt wird, verschiebt sich der Punkt des Phasenübergangs von der polymerreichen zur kolloidreichen Phase. Es wird gezeigt, dass diese Verschiebung direkt von den Benetzungseigenschaften des Systems abhängt, was die Beobachtung von zwei verschiedenen Morphologien bei Phasenkoexistenz ermöglicht – Schalenstrukturen und Strukturen des Janustyps. Im Rahmen der Untersuchung von heterogener Keimbildung von Kristallen innerhalb einer Flüssigkeit wird eine neue Simulationsmethode zur Berechnung von Freien Energien der Grenzfläche zwischen Kristall- bzw. Flüssigkeitsphase undWand präsentiert. Die Resultate für ein System von harten Kugeln und ein System einer Kolloid- Polymer-Mischung werden anschließend zur Bestimmung von Kontaktwinkeln von Kristallkeimen an Wänden verwendet. Die Dynamik der Phasenseparation eines quasi-zweidimensionalen Systems, welche sich nach einem Quench des Systems aus dem homogenen Zustand in den entmischten Zustand ausbildet, wird mit Hilfe von einer mesoskaligen Simulationsmethode (“Multi Particle Collision Dynamics”) untersucht, die sich für eine detaillierte Untersuchung des Einflusses der hydrodynamischen Wechselwirkung eignet. Die Exponenten universeller Potenzgesetze, die das Wachstum der mittleren Domänengröße beschreiben, welche für rein zwei- bzw. dreidimensionale Systeme bekannt sind, können für bestimmte Parameterbereiche nachgewiesen werden. Die unterschiedliche Dynamik senkrecht bzw. parallel zu den Wänden sowie der Einfluss der Randbedingungen für das Lösungsmittel werden untersucht. Es wird gezeigt, dass die daraus resultierende Abschirmung der hydrodynamischen Wechselwirkungsreichweite starke Auswirkungen auf das Wachstum der mittleren Domänengröße hat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poröse Medien spielen in der Hydrosphäre eine wesentliche Rolle bei der Strömung und beim Transport von Stoffen. In diesem Raum finden komplexe Prozesse statt: Advektion, Kon-vektion, Diffusion, hydromechanische Dispersion, Sorption, Komplexierung, Ionenaustausch und Abbau. Die strömungsmechanischen- und die Transportverhältnisse in porösen Medien werden direkt durch die Geometrie des Porenraumes selbst und durch die Eigenschaften der transportierten (oder strömenden) Medien bestimmt. In der Praxis wird eine Vielzahl von empirischen Modellen verwendet, die die Eigenschaften des porösen Mediums in repräsentativen Elementarvolumen wiedergeben. Die Ermittlung der in empirischen Modellen verwendeten Materialparameter erfolgt über Labor- oder Feldbestimmungsmethoden. Im Rahmen dieser Arbeit wurde das Computer-modell PoreFlow entwickelt, welches die hydraulischen Eigenschaften eines korngestützten porösen Mediums aus der mikroskopischen Modellierung des Fluidflusses und Transportes ableitet. Das poröse Modellmedium wird durch ein dreidimensionales Kugelpackungsmodell, zusam-mengesetzt aus einer beliebigen Kornverteilung, dargestellt. Im Modellporenraum wird die Strömung eines Fluids basierend auf einer stationären Lösung der Navier-Stokes-Gleichung simuliert. Die Ergebnisse der Modellsimulationen an verschiedenen Modellmedien werden mit den Ergebnissen von Säulenversuchen verglichen. Es zeigt sich eine deutliche Abhängigkeit der Strömungs- und Transportparameter von der Porenraumgeometrie sowohl in den Modell-simulationen als auch in den Säulenexperimenten.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Vorhersagen störungstheoretischer Quantenfeldtheorienzeigen eine gute Übereinstimmung mit experimentellgemessenen Werten. Bei diesen störungstheoretischenBerechnungen treten allerdings Ultraviolettdivergenzen auf,die keine physikalische Interpretation der Ergebnisseermöglichen. Durch Renormierung dieser Theorien erhält manjedoch berechnbare Ergebnisse mit hoher experimentellerVorhersagekraft. Der Renormierungsvorgang kann durch eineHopfalgebra, die sogenannte 'Hopfalgebra der Wurzelbäume',beschrieben werden.Die vorliegende Arbeit leistet einen Beitrag für weitereUntersuchungen dieser Hopfalgebrenstruktur und Bestimmungneuer mathematischer Methoden zur Beschreibung desRenormierungsvorgangs. Dazu wird die algebraische Strukturvon Renormierung aus der Sicht der Kategorientheorie und derTheorie von Operaden untersucht.Aus Sicht der Kategorientheorie lassen sich die den Renormierungsprozess beschreibenden mathematischen Größen ineiner Kategorie zusammenfassen. Eine additive Strukturermöglicht dabei die Berücksichtigung beliebigerRenormierungsschemata. Auf dieser Kategorie kann einassoziativitätsverletzendes Produkt definiert werden, wobeidie Verletzung durch einen sogenannten 'Assoziator'kontrolliert werden kann. Die Struktur wird auf die einerHopfkategorie erweitert, so daß eine kategorientheoretischeUntersuchung des Renormierungsprozesses ermöglicht wird.Diese Hopfkategorie wird aus Sicht von Renormierunginterpretiert, wobei Beispielrechnungen die definierteStruktur verdeutlichen.Aus algebraischer Sicht kann aufgrund der graphischenDarstellung des Operadenproduktes eine Bijektivität zwischenWurzelbäumen und Operaden gezeigt werden. Auf diesenOperaden kann wiederum eine Hopfalgebrenstruktur definiertwerden. Beispiele verdeutlichen diese Bijektivität.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In den letzten fünf Jahren hat sich mit dem Begriff desspektralen Tripels eine Möglichkeit zur Beschreibungdes an Spinoren gekoppelten Gravitationsfeldes auf(euklidischen) nichtkommutativen Räumen etabliert. Die Dynamik dieses Gravitationsfeldes ist dabei durch diesogenannte spektrale Wirkung, dieSpur einer geeigneten Funktion des Dirac-Operators,bestimmt. Erstaunlicherweise kann man die vollständige Lagrange-Dichtedes (an das Gravitationsfeld gekoppelten) Standardmodellsder Elementarteilchenphysik, also insbesondere auch denmassegebenden Higgs-Sektor, als spektrale Wirkungeines entsprechenden spektralen Tripels ableiten. Diesesspektrale Tripel ist als Produkt des spektralenTripels der (kommutativen) Raumzeit mit einem speziellendiskreten spektralen Tripel gegeben. In der Arbeitwerden solche diskreten spektralen Tripel, die bis vorKurzem neben dem nichtkommutativen Torus die einzigen,bekannten nichtkommutativen Beispiele waren, klassifiziert. Damit kannnun auch untersucht werden, inwiefern sich dasStandardmodell durch diese Eigenschaft gegenüber anderenYang-Mills-Higgs-Theorien auszeichnet. Es zeigt sichallerdings, dasses - trotz mancher Einschränkung - eine sehr große Zahl vonModellen gibt, die mit Hilfe von spektralen Tripelnabgeleitet werden können. Es wäre aber auch denkbar, dass sich das spektrale Tripeldes Standardmodells durch zusätzliche Strukturen,zum Beispiel durch eine darauf ``isometrisch'' wirkendeHopf-Algebra, auszeichnet. In der Arbeit werden, um dieseFrage untersuchen zu können, sogenannte H-symmetrischespektrale Tripel, welche solche Hopf-Isometrien aufweisen,definiert.Dabei ergibt sich auch eine Möglichkeit, neue(H-symmetrische) spektrale Tripel mit Hilfe ihrerzusätzlichen Symmetrienzu konstruieren. Dieser Algorithmus wird an den Beispielender kommutativen Sphäre, deren Spin-Geometrie hier zumersten Mal vollständig in der globalen, algebraischen Sprache der NichtkommutativenGeometrie beschrieben wird, sowie dem nichtkommutativenTorus illustriert.Als Anwendung werden einige neue Beipiele konstruiert. Eswird gezeigt, dass sich für Yang-Mills Higgs-Theorien, diemit Hilfe von H-symmetrischen spektralen Tripeln abgeleitetwerden, aus den zusätzlichen Isometrien Einschränkungen andiefermionischen Massenmatrizen ergeben. Im letzten Abschnitt der Arbeit wird kurz auf dieQuantisierung der spektralen Wirkung für diskrete spektraleTripel eingegangen.Außerdem wird mit dem Begriff des spektralen Quadrupels einKonzept für die nichtkommutative Verallgemeinerungvon lorentzschen Spin-Mannigfaltigkeiten vorgestellt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thema: Quantifizierung von Steinschlagrisiken an Straßen Die Einschätzung eines bestehenden Steinschlagrisikos an Verkehrswegen ist in Gebirgs- und Mittelgebirgsregionen seit jeher eine Aufgabe, die mit verschiedensten Methoden und unterschiedlichem Aufwand bearbeitet wird. In der vorliegenden Untersuchung werden die maßgebenden Parameter zur Beschreibung einer Böschung aufgenommen und bewertet. Es wurde ein Arbeitsblatt entwickelt, in dem festgelegte Parameter erfasst werden, die teils mit Ankreuztechnik, teils mit der Eingabe von Daten, im Computer notiert werden. Das Arbeitsblatt umfasst vier Themenbereiche: Allgemeine Daten, Angaben zur Geometrie der Böschung, Angaben zum Verkehr und Angaben zum Gestein und Gebirge. Ein Computerprogramm, das auf der Basis der Software Excel von Microsoft erstellt wurde, vergibt nach der Dateneingabe Bewertungspunkte (1. Bewertungsschritt). Es werden Summen gebildet und die Teilbereiche bewertet (2. Bewertungsschritt). Jeder Teilbereich besitzt drei Bewertungsklassen. Die Verknüpfung der Bewertung der Teilbereiche Geometrische Angaben und Angaben zum Gestein und Gebirge stellt die eigentliche Risikoeinschätzung dar (3. Bewertungsschritt). Es gibt drei Einstufungen zur Beschreibung des Risikos: ð Der Verkehr ist durch Steinschlag sehr gering gefährdet. ð Der Verkehr ist durch Steinschlag gering gefährdet. Eine Detailüberprüfung muss erfolgen, da eine Gefährdung nicht auszuschließen ist. ð Der Verkehr ist gefährdet. Es besteht ein hohes Steinschlagrisiko. Bewertungen und Hinweise zu den Teilbereichen Allgemeine Daten und Angaben zum Verkehr kann der Anwender nach eigenem Ermessen zusätzlich nutzen. Die abschließende Risikoeinschätzung erfolgt durch den Anwender bzw. einen Sachverständigen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents algorithms for the calculation of the electrostatic interaction in partially periodic systems. The framework for these algorithms is provided by the simulation package ESPResSo, of which the author was one of the main developers. The prominent features of the program are listed and the internal structure is described. In the following, algorithms for the calculation of the Coulomb sum in three dimensionally periodic systems are described. These methods are the foundations for the algorithms for partially periodic systems presented in this work. Starting from the MMM2D method for systems with one non-periodic coordinate, the ELC method for these systems is developed. This method consists of a correction term which allows to use methods for three dimensional periodicity also for the case of two periodic coordinates. The computation time of this correction term is neglible for large numbers of particles. The performance of MMM2D and ELC are demonstrated by results from the implementations contained in ESPResSo. It is also discussed, how different dielectric constants inside and outside of the simulation box can be realized. For systems with one periodic coordinate, the MMM1D method is derived from the MMM2D method. This method is applied to the problem of the attraction of like-charged rods in the presence of counterions, and results of the strong coupling theory for the equilibrium distance of the rods at infinite counterion-coupling are checked against results from computer simulations. The degree of agreement between the simulations at finite coupling and the theory can be characterized by a single parameter gamma_RB. In the special case of T=0, one finds under certain circumstances flat configurations, in which all charges are located in the rod-rod plane. The energetically optimal configuration and its stability are determined analytically, which depends on only one parameter gamma_z, similar to gamma_RB. These findings are in good agreement with results from computer simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit wurden die Phasenübergänge einer einzelnen Polymerkette mit Hilfe der Monte Carlo Methode untersucht. Das Bondfluktuationsmodell wurde zur Simulation benutzt, wobei ein attraktives Kastenpotential zwischen allen Monomeren der Polymerkette gewirkt hat. Drei Arten von Bewegungen sind eingeführt worden, um die Polymerkette richtig zu relaxieren. Diese sind die Hüpfbewegung, die Reptationsbewegung und die Pivotbewegung. Um die Volumenausschlußwechselwirkung zu prüfen und um die Anzahl der Nachbarn jedes Monomers zu bestimmen ist ein hierarchischer Suchalgorithmus eingeführt worden. Die Zustandsdichte des Modells ist mittels des Wang-Landau Algorithmus bestimmt worden. Damit sind thermodynamische Größen berechnet worden, um die Phasenübergänge der einzelnen Polymerkette zu studieren. Wir haben zuerst eine freie Polymerkette untersucht. Der Knäuel-Kügelchen Übergang zeigt sich als ein kontinuierlicher Übergang, bei dem der Knäuel zum Kügelchen zusammenfällt. Der Kügelchen-Kügelchen Übergang bei niedrigeren Temperaturen ist ein Phasenübergang der ersten Ordnung, mit einer Koexistenz des flüssigen und festen Kügelchens, das eine kristalline Struktur hat. Im thermodynamischen Limes sind die Übergangstemperaturen identisch. Das entspricht einem Verschwinden der flüssigen Phase. In zwei Dimensionen zeigt das Modell einen kontinuierlichen Knäuel-Kügelchen Übergang mit einer lokal geordneten Struktur. Wir haben ferner einen Polymermushroom, das ist eine verankerte Polymerkette, zwischen zwei repulsiven Wänden im Abstand D untersucht. Das Phasenverhalten der Polymerkette zeigt einen dimensionalen crossover. Sowohl die Verankerung als auch die Beschränkung fördern den Knäuel-Kügelchen Übergang, wobei es eine Symmetriebrechung gibt, da die Ausdehnung der Polymerkette parallel zu den Wänden schneller schrumpft als die senkrecht zu den Wänden. Die Beschränkung hindert den Kügelchen-Kügelchen Übergang, wobei die Verankerung keinen Einfluss zu haben scheint. Die Übergangstemperaturen im thermodynamischen Limes sind wiederum identisch im Rahmen des Fehlers. Die spezifische Wärme des gleichen Modells aber mit einem abstoßendem Kastenpotential zeigt eine Schottky Anomalie, typisch für ein Zwei-Niveau System.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main part of this thesis describes a method of calculating the massless two-loop two-point function which allows expanding the integral up to an arbitrary order in the dimensional regularization parameter epsilon by rewriting it as a double Mellin-Barnes integral. Closing the contour and collecting the residues then transforms this integral into a form that enables us to utilize S. Weinzierl's computer library nestedsums. We could show that multiple zeta values and rational numbers are sufficient for expanding the massless two-loop two-point function to all orders in epsilon. We then use the Hopf algebra of Feynman diagrams and its antipode, to investigate the appearance of Riemann's zeta function in counterterms of Feynman diagrams in massless Yukawa theory and massless QED. The class of Feynman diagrams we consider consists of graphs built from primitive one-loop diagrams and the non-planar vertex correction, where the vertex corrections only depend on one external momentum. We showed the absence of powers of pi in the counterterms of the non-planar vertex correction and diagrams built by shuffling it with the one-loop vertex correction. We also found the invariance of some coefficients of zeta functions under a change of momentum flow through these vertex corrections.