14 resultados para Additive Fertigung, Lasersintern, Finite Elemente Simulation, transiente thermische Vorgänge

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phononische Kristalle sind strukturierte Materialien mit sich periodisch ändernden elastischen Moduln auf der Wellenlängenskala. Die Interaktion zwischen Schallwellen und periodischer Struktur erzeugt interessante Interferenzphänomene, und phononische Kristalle erschließen neue Funktionalitäten, die in unstrukturierter Materie unzugänglich sind. Hypersonische phononische Kristalle im Speziellen, die bei GHz Frequenzen arbeiten, haben Periodizitäten in der Größenordnung der Wellenlänge sichtbaren Lichts und zeigen daher die Wege auf, gleichzeitig Licht- und Schallausbreitung und -lokalisation zu kontrollieren, und dadurch die Realisierung neuartiger akusto-optischer Anordnungen. Bisher bekannte hypersonische phononische Kristalle basieren auf thermoplastischen Polymeren oder Epoxiden und haben nur eingeschränkte thermische und mechanische Stabilität und mechanischen Kontrast. Phononische Kristalle, die aus mit Flüssigkeit gefüllten zylindrischen Kanälen in harter Matrix bestehen, zeigen einen sehr hohen elastischen Kontrast und sind bislang noch unerforscht. In dieser Dissertation wird die experimentelle Untersuchung zweidimensionaler hypersonischer phononischer Kristalle mit hexagonaler Anordnung zylindrischer Nanoporen basierend auf der Selbstorganisation anodischen Aluminiumoxids (AAO) beschrieben. Dazu wird die Technik der hochauflösenden inelastischen Brillouin Lichtstreuung (BLS) verwendet. AAO ist ein vielsetiges Modellsystem für die Untersuchung reicher phononischer Phänomene im GHz-Bereich, die eng mit den sich in den Nanoporen befindlichen Flüssigkeiten und deren Interaktion mit der Porenwand verknüpft sind. Gerichteter Fluss elastischer Energie parallel und orthogonal zu der Kanalachse, Lokalisierung von Phononen und Beeinflussung der phononischen Bandstruktur bei gleichzeitig präziser Kontrolle des Volumenbruchs der Kanäle (Porosität) werden erörtert. Außerdem ermöglicht die thermische Stabilität von AAO ein temperaturabhängiges Schalten phononischer Eigenschaften infolge temperaturinduzierter Phasenübergänge in den Nanoporen. In monokristallinen zweidimensionalen phononischen AAO Kristallen unterscheiden sich die Dispersionsrelationen empfindlich entlang zweier hoch symmetrischer Richtungen in der Brillouinzone, abhängig davon, ob die Poren leer oder gefüllt sind. Alle experimentellen Dispersionsrelationen werden unter Zuhilfenahme theoretische Ergebnisse durch finite Elemente Analyse (FDTD) gedeutet. Die Zuordnung der Verschiebungsfelder der elastischen Wellen erklärt die Natur aller phononischen Moden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zur Untersuchung von Effekten beim Laserheizen von Polymeren wurde ein Temperaturmessaufbau entwickelt. Das Messprinzip basiert auf der Auswertung der thermischen Emission. Der Messaufbau besteht aus einer hochauflösenden Kamera, ausgestattet mit Bildverstärker, sowie Interferenzfiltern um eine spektrale Auflösung zu gewährleisten und einem gepulster NIR-Heizlaser. Die Pulsdauer des Lasers liegt in der Größenordnung von 10 µs, der Strahldurchmesser durch entsprechende Fokussierung in der Größenordnung von 10 µm. Mittels Fit des Planck‘schen Strahlungsgesetzes an die aufgenommene thermische Emission konnten 2D Temperaturgraphen erhalten werden. Eine Ortsauflösung von 1 µm und eine Zeitauflösung von 1 µs konnten realisiert werden. In Kombination mit Finite-Elemente-Simulationen wurde mit diesem Aufbau die Laserablation verschiedener Polymere untersucht. Dabei hat sich gezeigt, dass bei Polymeren mit einem Glasübergang im Temperaturbereich zwischen Raum- und Zerfallstemperatur, photomechanische Ablation stattfand. Die Ablationsschwelle lag für diese Polymere mehrere 10 K über dem Glasübergang, weit unter der Zerfallstemperatur aus thermogravimetrischen Experimenten mit typischen Heizraten von 10 K/min. Bei hohen Laserenergien und damit verbundenen hohen Temperaturen konnte dagegen thermischer Zerfall beobachtet werden. Ein Übergang des Mechanismus von photomechanischer Ablation zu Ablation durch thermischen Zerfall ergab sich bei Temperaturen deutlich über der Zerfallstemperatur des Polymers aus der Thermogravimetrie. Dies wurde bedingt durch die kurzen Reaktionszeiten des Laserexperiments in der Größenordnung der Pulsdauer und steht im Einklang mit dem Gesetz von Arrhenius. Polymere ohne Glasübergang im Heizbereich zeigten dagegen keine photomechanische Ablation, sondern ausschließlich thermischen Zerfall. Die Ablationsschwelle lag auch hier bei höheren Temperaturen, entsprechend dem Gesetz von Arrhenius. Hohe Temperaturen, mehrere 100 K über der Zerfallstemperatur, ergaben sich darüber hinaus bei hohen Laserenergien. Ein drastisches Überhitzen des Polymers, wie in der Literatur beschrieben, konnte nicht beobachtet werden. Experimentelle Befunde deuten vielmehr darauf hin, dass es sich bei dem heißen Material um thermische Zerfallsprodukte, Polymerfragmente, Monomer und Zerfallsprodukte des Monomers handelte bzw. das Temperaturprofil der Zerfallsreaktion selbst visualisiert wurde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallische Objekte in der Größenordnung der optischen Wellenlänge zeigen Resonanzen im optischen Spektralbereich. Mit einer Kombination aus Kolloidlithographie, Metallfilmbedampfung und reaktivem Ionenstrahl¨atzen wurden Nanosicheln aus Gold bzw. Silber mit identischer Form und Orientierung in Sichelform mit einer Größe von 60nm bis 400nm hergestellt. Der Öffnungswinkel der Nanosicheln lässt sich kontinuierlich einstellen. Durch die einheitliche Orientierung lassen sich Messungen am Ensemble direkt auf das Verhalten des Einzelobjektes übertragen, wie ein Vergleich der Extinktionsspektren einer Ensemblemessung am UV/Vis/NIR-Spektrometer mit einer Einzelpartikelmessung in einem konfokalen Mikroskop zeigt. Die optische Antwort der Nanosicheln wurde als zwei-dimensionales Modell mit einer Finite Elemente Methode berechnet. Das Ergebnis sind mehrere polarisationsabhängige Resonanzen im optischen Spektrum. Diese lassen sich durch Variation des Öffnungswinkels und der Gr¨oße der Nanosichel verschieben. Durch Beleuchten lassen sich plasmonische Schwingungen anregen, die ein stark lokalisiertes Nahfeld an den Spitzen und in der Öffnung der Nanosicheln erzeugen. Das Nahfeld der Partikelresonanz wurde mit einer Fotolackmethode nachgewiesen. Die Untersuchungen am UV/Vis/NIR-Spektrometer zeigen mehrere polarisationsabhängige Resonanzen im Spektralbereich von 300 nm bis 3200 nm. Die Resonanzen der Nanosicheln lassen sich durch den Öffnungswinkel und den Durchmesser in der Größenordnung der Halbwertbreite im optischen Spektrum verschieben. In der Anwendung als Chemo- bzw. Biosensor zeigen Gold-Nanosicheln eine ähnliche Empfindlichkeit wie vergleichbare Sensoren auf der Basis von dünnen Metallstrukturen. Das Nahfeld zeichnet sich durch eine starke Lokalisierung aus und dringt, je nach Multipolordnung, zwischen 14 nm und 70 nm in die Umgebung ein. Quantenpunkte wurden an das Nahfeld der Nanosicheln gekoppelt. Die Emission der Quantenpunkte bei einer Wellenlänge von 860nm wird durch die Resonanz der Nanosicheln verstärkt. Die Nanosicheln wurden als optische Pinzette eingesetzt. Bei einer Anregung mit einem Laser bei einer Wellenlänge von 1064 nm wurden Polystyrolkolloide mit einem Durchmesser von 40 nm von den resonanten Nanosicheln eingefangen. Die Nanosicheln zeigen außergewöhnliche optische Eigenschaften, die mithilfe der Geometrieparameter über einen großen Bereich verändert werden können. Die ersten Anwendungen haben Anknüpfungspunkte zur Verwendung in der Sensorik, Fluoreszenzspektroskopie und als optische Pinzette aufgezeigt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface stress changes induced by specific adsorption of molecules were investigated using a micromechanical cantilever sensor (MCS) device. 16 MCS are grouped within four separate wells. Each well can be addressed independently by different liquid enabling functionalization of MCS separately by flowing different solutions through each well and performing sensing and reference experiments simultaneously. In addition, each well contains a fixed reference mirror, which allows measuring the absolute bending of MCS. The effect of the flow rate on the MCS bending change was found to be dependent on the absolute bending value of MCS. In addition, the signal from the reference mirror can be used to follow refractive index changes upon mixing different solutions. Finite element simulation of solution exchange in wells was compared with experiment results. Both revealed that one solution can be exchanged by another one after a total volume of 200 µl has flown through. Using MCS, the adsorption of thiolated deoxyribonucleic acid (DNA) molecules and 6-mercapto-1-hexanol (MCH) on gold surfaces, and the DNA hybridization were performed. The nanomechanical response is in agreement with data reported by Fritz et al.1 Thus, the multiwell device is readily applicable for sensing of multiple chemical and biological recognition events in a single step. In this context controlled release and uptake of drugs are currently widely discussed. As a model system, we have used polystyrene (PS) spheres with diameters in the order of µm. The swelling behavior of individual PS spheres in toluene vapor was studied via mass loading by means of micromechanical cantilever sensors. For 4–8% cross-linked PS a mass increase of 180% in saturated toluene vapor was measured. In addition, the diameter change in saturated toluene vapor was measured and the corresponding volume increase of 200% was calculated. The mass of the swollen PS sphere decreases with increasing exposure time to ultraviolet (UV) light. The swelling response is significantly different between the first and the second exposure to toluene vapor. This is attributed to the formation of a cross-linked shell at the surface of the PS spheres. Shape persistent parts were observed for locally UV irradiated PS spheres. These PS spheres were found to be fluorescent and cracks occur after exposure in toluene liquid. The diffusion time of dye molecules in PS spheres increases with increasing chemical cross-linking density. This concept of locally dissolving non cross-linked PS from the sphere was applied to fabricate donut structures on surfaces. Arrays of PS spheres were fabricated using spin coating. The donut structure was produced simply after liquid solvent rinsing. The complete cross-linking of PS spheres was found after long exposure time to UV. We found that stabilizers play a major role in the formation of the donut nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquids and gasses form a vital part of nature. Many of these are complex fluids with non-Newtonian behaviour. We introduce a mathematical model describing the unsteady motion of an incompressible polymeric fluid. Each polymer molecule is treated as two beads connected by a spring. For the nonlinear spring force it is not possible to obtain a closed system of equations, unless we approximate the force law. The Peterlin approximation replaces the length of the spring by the length of the average spring. Consequently, the macroscopic dumbbell-based model for dilute polymer solutions is obtained. The model consists of the conservation of mass and momentum and time evolution of the symmetric positive definite conformation tensor, where the diffusive effects are taken into account. In two space dimensions we prove global in time existence of weak solutions. Assuming more regular data we show higher regularity and consequently uniqueness of the weak solution. For the Oseen-type Peterlin model we propose a linear pressure-stabilized characteristics finite element scheme. We derive the corresponding error estimates and we prove, for linear finite elements, the optimal first order accuracy. Theoretical error of the pressure-stabilized characteristic finite element scheme is confirmed by a series of numerical experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A path integral simulation algorithm which includes a higher-order Trotter approximation (HOA)is analyzed and compared to an approach which includes the correct quantum mechanical pair interaction (effective Propagator (EPr)). It is found that the HOA algorithmconverges to the quantum limit with increasing Trotter number P as P^{-4}, while the EPr algorithm converges as P^{-2}.The convergence rate of the HOA algorithm is analyzed for various physical systemssuch as a harmonic chain,a particle in a double-well potential, gaseous argon, gaseous helium and crystalline argon. A new expression for the estimator for the pair correlation function in the HOA algorithm is derived. A new path integral algorithm, the hybrid algorithm, is developed.It combines an exact treatment of the quadratic part of the Hamiltonian and thehigher-order Trotter expansion techniques.For the discrete quantum sine-Gordon chain (DQSGC), it is shown that this algorithm works more efficiently than all other improved path integral algorithms discussed in this work. The new simulation techniques developed in this work allow the analysis of theDQSGC and disordered model systems in the highly quantum mechanical regime using path integral molecular dynamics (PIMD)and adiabatic centroid path integral molecular dynamics (ACPIMD).The ground state phonon dispersion relation is calculated for the DQSGC by the ACPIMD method.It is found that the excitation gap at zero wave vector is reduced by quantum fluctuations. Two different phases exist: One phase with a finite excitation gap at zero wave vector, and a gapless phase where the excitation gap vanishes.The reaction of the DQSGC to an external driving force is analyzed at T=0.In the gapless phase the system creeps if a small force is applied, and in the phase with a gap the system is pinned. At a critical force, the systems undergo a depinning transition in both phases and flow is induced. The analysis of the DQSGC is extended to models with disordered substrate potentials. Three different cases are analyzed: Disordered substrate potentials with roughness exponent H=0, H=1/2,and a model with disordered bond length. For all models, the ground state phonon dispersion relation is calculated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die vorliegende Doktorarbeit befasst sich mit klassischen Vektor-Spingläsern eine Art von ungeordneten Magneten - auf verschiedenen Gittertypen. Da siernbedeutsam für eine experimentelle Realisierung sind, ist ein theoretisches Verständnis von Spinglas-Modellen mit wenigen Spinkomponenten und niedriger Gitterdimension von großer Bedeutung. Da sich dies jedoch als sehr schwierigrnerweist, sind neue, aussichtsreiche Ansätze nötig. Diese Arbeit betrachtet daher den Limesrnunendlich vieler Spindimensionen. Darin entstehen mehrere Vereinfachungen im Vergleichrnzu Modellen niedriger Spindimension, so dass für dieses bedeutsame Problem Eigenschaften sowohl bei Temperatur Null als auch bei endlichen Temperaturenrnüberwiegend mit numerischen Methoden ermittelt werden. Sowohl hyperkubische Gitter als auch ein vielseitiges 1d-Modell werden betrachtet. Letzteres erlaubt es, unterschiedliche Universalitätsklassen durch bloßes Abstimmen eines einzigen Parameters zu untersuchen. "Finite-size scaling''-Formen, kritische Exponenten, Quotienten kritischer Exponenten und andere kritische Größen werden nahegelegt und mit numerischen Ergebnissen verglichen. Eine detaillierte Beschreibung der Herleitungen aller numerisch ausgewerteter Gleichungen wird ebenso angegeben. Bei Temperatur Null wird eine gründliche Untersuchung der Grundzustände und Defektenergien gemacht. Eine Reihe interessanter Größen wird analysiert und insbesondere die untere kritische Dimension bestimmt. Bei endlicher Temperatur sind der Ordnungsparameter und die Spinglas-Suszeptibilität über die numerisch berechnete Korrelationsmatrix zugänglich. Das Spinglas-Modell im Limes unendlich vieler Spinkomponenten kann man als Ausgangspunkt zur Untersuchung der natürlicheren Modelle mit niedriger Spindimension betrachten. Wünschenswert wäre natürlich ein Modell, das die Vorteile des ersten mit den Eigenschaften des zweiten verbände. Daher wird in Modell mit Anisotropie vorgeschlagen und getestet, mit welchem versucht wird, dieses Ziel zu erreichen. Es wird auf reizvolle Wege hingewiesen, das Modell zu nutzen und eine tiefergehende Beschäftigung anzuregen. Zuletzt werden sogenannte "real-space" Renormierungsgruppenrechnungen sowohl analytisch als auch numerisch für endlich-dimensionale Vektor-Spingläser mit endlicher Anzahl von Spinkomponenten durchgeführt. Dies wird mit einer zuvor bestimmten neuen Migdal-Kadanoff Rekursionsrelation geschehen. Neben anderen Größen wird die untere kritische Dimension bestimmt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Dissertationsschrift beschäftigt sich mit der Entwicklung und Anwendung einer alternativen Probenzuführungstechnik für flüssige Proben in der Massenspektrometrie. Obwohl bereits einige Anstrengungen zur Verbesserung unternommen wurden, weisen konventionelle pneumatische Zerstäuber- und Sprühkammersysteme, die in der Elementspurenanalytik mittels induktiv gekoppeltem Plasma (ICP) standardmäßig verwendet werden, eine geringe Gesamteffizienz auf. Pneumatisch erzeugtes Aerosol ist durch eine breite Tropfengrößenverteilung gekennzeichnet, was den Einsatz einer Sprühkammer bedingt, um die Aerosolcharakteristik an die Betriebsbedingungen des ICPs anzupassen.. Die Erzeugung von Tropfen mit einer sehr engen Tropfengrößenverteilung oder sogar monodispersen Tropfen könnte die Effizienz des Probeneintrags verbessern. Ein Ziel dieser Arbeit ist daher, Tropfen, die mittels des thermischen Tintenstrahldruckverfahrens erzeugt werden, zum Probeneintrag in der Elementmassenspektrometrie einzusetzen. Das thermische Tintenstrahldruckverfahren konnte in der analytischen Chemie im Bereich der Oberflächenanalytik mittels TXRF oder Laserablation bisher zur gezielten, reproduzierbaren Deposition von Tropfen auf Oberflächen eingesetzt werden. Um eine kontinuierliche Tropfenerzeugung zu ermöglichen, wurde ein elektronischer Mikrokontroller entwickelt, der eine Dosiereinheit unabhängig von der Hard- und Software des Druckers steuern kann. Dabei sind alle zur Tropfenerzeugung relevanten Parameter (Frequenz, Heizpulsenergie) unabhängig voneinander einstellbar. Die Dosiereinheit, der "drop-on-demand" Aerosolgenerator (DOD), wurde auf eine Aerosoltransportkammer montiert, welche die erzeugten Tropfen in die Ionisationsquelle befördert. Im Bereich der anorganischen Spurenanalytik konnten durch die Kombination des DOD mit einem automatischen Probengeber 53 Elemente untersucht und die erzielbare Empfindlichkeiten sowie exemplarisch für 15 Elemente die Nachweisgrenzen und die Untergrundäquivalentkonzentrationen ermittelt werden. Damit die Vorteile komfortabel genutzt werden können, wurde eine Kopplung des DOD-Systems mit der miniaturisierten Fließinjektionsanalyse (FIA) sowie miniaturisierten Trenntechniken wie der µHPLC entwickelt. Die Fließinjektionsmethode wurde mit einem zertifizierten Referenzmaterial validiert, wobei für Vanadium und Cadmium die zertifizierten Werte gut reproduziert werden konnten. Transiente Signale konnten bei der Kopplung des Dosiersystems in Verbindung mit der ICP-MS an eine µHPLC abgebildet werden. Die Modifikation der Dosiereinheit zum Ankoppeln an einen kontinuierlichen Probenfluss bedarf noch einer weiteren Reduzierung des verbleibenden Totvolumens. Dazu ist die Unabhängigkeit von den bisher verwendeten, kommerziell erhältlichen Druckerpatronen anzustreben, indem die Dosiereinheit selbst gefertigt wird. Die Vielseitigkeit des Dosiersystems wurde mit der Kopplung an eine kürzlich neu entwickelte Atmosphärendruck-Ionisationsmethode, die "flowing atmospheric-pressure afterglow" Desorptions/Ionisations Ionenquelle (FAPA), aufgezeigt. Ein direkter Eintrag von flüssigen Proben in diese Quelle war bislang nicht möglich, es konnte lediglich eine Desorption von eingetrockneten Rückständen oder direkt von der Flüssigkeitsoberfläche erfolgen. Die Präzision der Analyse ist dabei durch die variable Probenposition eingeschränkt. Mit dem Einsatz des DOD-Systems können flüssige Proben nun direkt in die FAPA eingetragen, was ebenfalls das Kalibrieren bei quantitativen Analysen organischer Verbindungen ermöglicht. Neben illegalen Drogen und deren Metaboliten konnten auch frei verkäufliche Medikamente und ein Sprengstoffanalogon in entsprechend präpariertem reinem Lösungsmittel nachgewiesen werden. Ebenso gelang dies in Urinproben, die mit Drogen und Drogenmetaboliten versetzt wurden. Dabei ist hervorzuheben, dass keinerlei Probenvorbereitung notwendig war und zur Ermittlung der NWG der einzelnen Spezies keine interne oder isotopenmarkierte Standards verwendet wurden. Dennoch sind die ermittelten NWG deutlich niedriger, als die mit der bisherigen Prozedur zur Analyse flüssiger Proben erreichbaren. Um im Vergleich zu der bisher verwendeten "pin-to-plate" Geometrie der FAPA die Lösungsmittelverdampfung zu beschleunigen, wurde eine alternative Elektrodenanordnung entwickelt, bei der die Probe länger in Kontakt mit der "afterglow"-Zone steht. Diese Glimmentladungsquelle ist ringförmig und erlaubt einen Probeneintrag mittels eines zentralen Gasflusses. Wegen der ringförmigen Entladung wird der Name "halo-FAPA" (h-FAPA) für diese Entladungsgeometrie verwendet. Eine grundlegende physikalische und spektroskopische Charakterisierung zeigte, dass es sich tatsächlich um eine FAPA Desorptions/Ionisationsquelle handelt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In condensed matter systems, the interfacial tension plays a central role for a multitude of phenomena. It is the driving force for nucleation processes, determines the shape and structure of crystalline structures and is important for industrial applications. Despite its importance, the interfacial tension is hard to determine in experiments and also in computer simulations. While for liquid-vapor interfacial tensions there exist sophisticated simulation methods to compute the interfacial tension, current methods for solid-liquid interfaces produce unsatisfactory results.rnrnAs a first approach to this topic, the influence of the interfacial tension on nuclei is studied within the three-dimensional Ising model. This model is well suited because despite its simplicity, one can learn much about nucleation of crystalline nuclei. Below the so-called roughening temperature, nuclei in the Ising model are not spherical anymore but become cubic because of the anisotropy of the interfacial tension. This is similar to crystalline nuclei, which are in general not spherical but more like a convex polyhedron with flat facets on the surface. In this context, the problem of distinguishing between the two bulk phases in the vicinity of the diffuse droplet surface is addressed. A new definition is found which correctly determines the volume of a droplet in a given configuration if compared to the volume predicted by simple macroscopic assumptions.rnrnTo compute the interfacial tension of solid-liquid interfaces, a new Monte Carlo method called ensemble switch method'' is presented which allows to compute the interfacial tension of liquid-vapor interfaces as well as solid-liquid interfaces with great accuracy. In the past, the dependence of the interfacial tension on the finite size and shape of the simulation box has often been neglected although there is a nontrivial dependence on the box dimensions. As a consequence, one needs to systematically increase the box size and extrapolate to infinite volume in order to accurately predict the interfacial tension. Therefore, a thorough finite-size scaling analysis is established in this thesis. Logarithmic corrections to the finite-size scaling are motivated and identified, which are of leading order and therefore must not be neglected. The astounding feature of these logarithmic corrections is that they do not depend at all on the model under consideration. Using the ensemble switch method, the validity of a finite-size scaling ansatz containing the aforementioned logarithmic corrections is carefully tested and confirmed. Combining the finite-size scaling theory with the ensemble switch method, the interfacial tension of several model systems, ranging from the Ising model to colloidal systems, is computed with great accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulation of the Oldroyd-B type viscoelastic fluids is a very challenging problem. rnThe well-known High Weissenberg Number Problem" has haunted the mathematicians, computer scientists, and rnengineers for more than 40 years. rnWhen the Weissenberg number, which represents the ratio of elasticity to viscosity, rnexceeds some limits, simulations done by standard methods break down exponentially fast in time. rnHowever, some approaches, such as the logarithm transformation technique can significantly improve rnthe limits of the Weissenberg number until which the simulations stay stable. rnrnWe should point out that the global existence of weak solutions for the Oldroyd-B model is still open. rnLet us note that in the evolution equation of the elastic stress tensor the terms describing diffusive rneffects are typically neglected in the modelling due to their smallness. However, when keeping rnthese diffusive terms in the constitutive law the global existence of weak solutions in two-space dimension rncan been shown. rnrnThis main part of the thesis is devoted to the stability study of the Oldroyd-B viscoelastic model. rnFirstly, we show that the free energy of the diffusive Oldroyd-B model as well as its rnlogarithm transformation are dissipative in time. rnFurther, we have developed free energy dissipative schemes based on the characteristic finite element and finite difference framework. rnIn addition, the global linear stability analysis of the diffusive Oldroyd-B model has also be discussed. rnThe next part of the thesis deals with the error estimates of the combined finite element rnand finite volume discretization of a special Oldroyd-B model which covers the limiting rncase of Weissenberg number going to infinity. Theoretical results are confirmed by a series of numerical rnexperiments, which are presented in the thesis, too.