57 resultados para polymer electrolyte


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we investigated the evaporation of sessile microdroplets on different solid substrates. Three major aspects were studied: the influence of surface hydrophilicity and heterogeneity on the evaporation dynamics for an insoluble solid substrate, the influence of external process parameters and intrinsic material properties on microstructuring of soluble polymer substrates and the influence of an increased area to volume ratio in a microfluidic capillary, when evaporation is hindered. In the first part, the evaporation dynamics of pure sessile water drops on smooth self-assembled monolayers (SAMs) of thiols or disulfides on gold on mica was studied. With increasing surface hydrophilicity the drop stayed pinned longer. Thus, the total evaporation time of a given initial drop volume was shorter, since the drop surface, through which the evaporation occurs, stays longer large. Usually, for a single drop the volume decreased linearly with t1.5, t being the evaporation time, for a diffusion-controlled evaporation process. However, when we measured the total evaporation time, ttot, for multiple droplets with different initial volumes, V0, we found a scaling of the form V0 = attotb. The more hydrophilic the substrate was, the more showed the scaling exponent a tendency to an increased value up to 1.6. This can be attributed to an increasing evaporation rate through a thin water layer in the vicinity of the drop. Under the assumption of a constant temperature at the substrate surface a cooling of the droplet and thus a decreased evaporation rate could be excluded as a reason for the different scaling exponent by simulations performed by F. Schönfeld at the IMM, Mainz. In contrast, for a hairy surface, made of dialkyldisulfide SAMs with different chain lengths and a 1:1 mixture of hydrophilic and hydrophobic end groups (hydroxy versus methyl group), the scaling exponent was found to be ~ 1.4. It increased to ~ 1.5 with increasing hydrophilicity. A reason for this observation can only be speculated: in the case of longer hydrophobic alkyl chains the formation of an air layer between substrate and surface might be favorable. Thus, the heat transport to the substrate might be reduced, leading to a stronger cooling and thus decreased evaporation rate. In the second part, the microstructuring of polystyrene surfaces by drops of toluene, a good solvent, was investigated. For this a novel deposition technique was developed, with which the drop can be deposited with a syringe. The polymer substrate is lying on a motorized table, which picks up the pendant drop by an upward motion until a liquid bridge is formed. A consecutive downward motion of the table after a variable delay, i.e. the contact time between drop and polymer, leads to the deposition of the droplet, which can evaporate. The resulting microstructure is investigated in dependence of the processes parameters, i.e. the approach and the retraction speed of the substrate and the delay between them, and in dependence of the intrinsic material properties, i.e. the molar mass and the type of the polymer/solvent system. The principal equivalence with the microstructuring by the ink-jet technique was demonstrated. For a high approach and retraction speed of 9 mm/s and no delay between them, a concave microtopology was observed. In agreement with the literature, this can be explained by a flow of solvent and the dissolved polymer to the rim of the pinned droplet, where polymer is accumulated. This effect is analogue to the well-known formation of ring-like stains after the evaporation of coffee drops (coffee-stain effect). With decreasing retraction speed down to 10 µm/s the resulting surface topology changes from concave to convex. This can be explained with the increasing dissolution of polymer into the solvent drop prior to the evaporation. If the polymer concentration is high enough, gelation occurs instead of a flow to the rim and the shape of the convex droplet is received. With increasing delay time from below 0 ms to 1s the depth of the concave microwells decreases from 4.6 µm to 3.2 µm. However, a convex surface topology could not be obtained, since for longer delay times the polymer sticks to the tip of the syringe. Thus, by changing the delay time a fine-tuning of the concave structure is accomplished, while by changing the retraction speed a principal change of the microtopolgy can be achieved. We attribute this to an additional flow inside the liquid bridge, which enhanced polymer dissolution. Even if the pendant drop is evaporating about 30 µm above the polymer surface without any contact (non-contact mode), concave structures were observed. Rim heights as high as 33 µm could be generated for exposure times of 20 min. The concave structure exclusively lay above the flat polymer surface outside the structure even after drying. This shows that toluene is taken up permanently. The increasing rim height, rh, with increasing exposure time to the solvent vapor obeys a diffusion law of rh = rh0  tn, with n in the range of 0.46 ~ 0.65. This hints at a non-Fickian swelling process. A detailed analysis showed that the rim height of the concave structure is modulated, unlike for the drop deposition. This is due to the local stress relaxation, which was initiated by the increasing toluene concentration in the extruded polymer surface. By altering the intrinsic material parameters i.e. the polymer molar mass and the polymer/solvent combination, several types of microstructures could be formed. With increasing molar mass from 20.9 kDa to 1.44 MDa the resulting microstructure changed from convex, to a structure with a dimple in the center, to concave, to finally an irregular structure. This observation can be explained if one assumes that the microstructuring is dominated by two opposing effects, a decreasing solubility with increasing polymer molar mass, but an increasing surface tension gradient leading to instabilities of Marangoni-type. Thus, a polymer with a low molar mass close or below the entanglement limit is subject to a high dissolution rate, which leads to fast gelation compared to the evaporation rate. This way a coffee-rim like effect is eliminated early and a convex structure results. For high molar masses the low dissolution rate and the low polymer diffusion might lead to increased surface tension gradients and a typical local pile-up of polymer is found. For intermediate polymer masses around 200 kDa, the dissolution and evaporation rate are comparable and the typical concave microtopology is found. This interpretation was supported by a quantitative estimation of the diffusion coefficient and the evaporation rate. For a different polymer/solvent system, polyethylmethacrylate (PEMA)/ethylacetate (EA), exclusively concave structures were found. Following the statements above this can be interpreted with a lower dissolution rate. At low molar masses the concentration of PEMA in EA most likely never reaches the gelation point. Thus, a concave instead of a convex structure occurs. At the end of this section, the optically properties of such microstructures for a potential application as microlenses are studied with laser scanning confocal microscopy. In the third part, the droplet was confined into a glass microcapillary to avoid evaporation. Since here, due to an increased area to volume ratio, the surface properties of the liquid and the solid walls became important, the influence of the surface hydrophilicity of the wall on the interfacial tension between two immiscible liquid slugs was investigated. For this a novel method for measuring the interfacial tension between the two liquids within the capillary was developed. This technique was demonstrated by measuring the interfacial tensions between slugs of pure water and standard solvents. For toluene, n-hexane and chloroform 36.2, 50.9 and 34.2 mN/m were measured at 20°C, which is in a good agreement with data from the literature. For a slug of hexane in contact with a slug of pure water containing ethanol in a concentration range between 0 and 70 (v/v %), a difference of up to 6 mN/m was found, when compared to commercial ring tensiometry. This discrepancy is still under debate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A broad variety of solid state NMR techniques were used to investigate the chain dynamics in several polyethylene (PE) samples, including ultrahigh molecular weight PEs (UHMW-PEs) and low molecular weight PEs (LMW-PEs). Via changing the processing history, i.e. melt/solution crystallization and drawing processes, these samples gain different morphologies, leading to different molecular dynamics. Due to the long chain nature, the molecular dynamics of polyethylene can be distinguished in local fluctuation and long range motion. With the help of NMR these different kinds of molecular dynamics can be monitored separately. In this work the local chain dynamics in non-crystalline regions of polyethylene samples was investigated via measuring 1H-13C heteronuclear dipolar coupling and 13C chemical shift anisotropy (CSA). By analyzing the motionally averaged 1H-13C heteronuclear dipolar coupling and 13C CSA, the information about the local anisotropy and geometry of motion was obtained. Taking advantage of the big difference of the 13C T1 relaxation time in crystalline and non-crystalline regions of PEs, the 1D 13C MAS exchange experiment was used to investigate the cooperative chain motion between these regions. The different chain organizations in non-crystalline regions were used to explain the relationship between the local fluctuation and the long range motion of the samples. In a simple manner the cooperative chain motion between crystalline and non-crystalline regions of PE results in the experimentally observed diffusive behavior of PE chain. The morphological influences on the diffusion motion have been discussed. The morphological factors include lamellar thickness, chain organization in non-crystalline regions and chain entanglements. Thermodynamics of the diffusion motion in melt and solution crystallized UHMW-PEs is discussed, revealing entropy-controlled features of the chain diffusion in PE. This thermodynamic consideration explains the counterintuitive relationship between the local fluctuation and the long range motion of the samples. Using the chain diffusion coefficient, the rates of jump motion in crystals of the melt crystallized PE have been calculated. A concept of "effective" jump motion has been proposed to explain the difference between the values derived from the chain diffusion coefficients and those in literatures. The observations of this thesis give a clear demonstration of the strong relationship between the sample morphology and chain dynamics. The sample morphologies governed by the processing history lead to different spatial constraints for the molecular chains, leading to different features of the local and long range chain dynamics. The knowledge of the morphological influence on the microscopic chain motion has many implications in our understanding of the alpha-relaxation process in PE and the related phenomena such as crystal thickening, drawability of PE, the easy creep of PE fiber, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the surface layer formation in polymer melts and in polymer solutions have been investigated with the atomic force microscope (AFM). In polymer melts, the formation of an immobile surface layer results in a steric repulsion, which can be measured by the AFM. From former work it is know, that polydimethyl siloxane (PDMS) forms a stable surface layer for molecular weights above 12 kDa. In the present thesis, polyisoprene (PI) was investigated apart from PDMS, by a)measuring the steric surface interactions and b)measuring the surface slip in hydrodynamic experiments. If a polymer flows over a surface, the flow velocity at the surface is larger then zero. If case of a surface layer formation the flow plane changes to the top of the adsorbed layer and the surface slip is reduced to zero. By measuring the surface slip in hydrodynamic experiments, it is therefore possible to determine the presence of a stable surface layer. The results show no stable repulsion for PI and only a small decrease of the surface slip. This indicates that PI does not form a stable surface layer, but is only adsorbed weakly to the surface. Furthermore for 8 kDa PDMS the timescale of the formation of a surface layer was investigated by changing themaximal force the tip applied to the surface. With a repulsive force present, applying a higher force than 15 nN resulted in a destruction of the surface layer, indicated by attractive forces. Reducing the applied force below 15 nN then resulted in an increase of the repulsion to the former state during one minute, thus indicating that a surface layer can be formed within one minute even under the influence of continuous measurements. As a next step, mixtures of two PDMS homopolymers with different chain lengths have been investigated. The aim was to verify theoretical predictions that shorter chains should predominate at the surface due to their smaller loss in conformational entropy. The measurements where done in dependence of the volume fractions of short and long chain PMDS. The results confirmed the short chain dominance for all mixtures with less then 90 vol.% long chain PDMS. Surface layer formation in solution was investigated for superplasticizers which are industrially used as an additive to cement. They change the surface interaction between the cement grains from attractive to repulsive and the freshlymixed cement paste therefore becomes liquid. The aimin this part of the thesis was, to investigate cement particle interactions in a close to real environment. Therefore calcium silicate hydrate phases have been precipitated onto an AFM tip and onto a calcite crystal and the interaction between these surfaces have beenmeasured with and without addition of superplasticizers. The measurements confirmed the change from attraction to repulsion upon addition of superplasticizers. The repulsive steric interaction increased with the length of the sidechain of the superplasticizer, and the dependence of the range of the steric interactions on the sidechain length indicated that the sidechains are in a coiled conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface stress changes induced by specific adsorption of molecules were investigated using a micromechanical cantilever sensor (MCS) device. 16 MCS are grouped within four separate wells. Each well can be addressed independently by different liquid enabling functionalization of MCS separately by flowing different solutions through each well and performing sensing and reference experiments simultaneously. In addition, each well contains a fixed reference mirror, which allows measuring the absolute bending of MCS. The effect of the flow rate on the MCS bending change was found to be dependent on the absolute bending value of MCS. In addition, the signal from the reference mirror can be used to follow refractive index changes upon mixing different solutions. Finite element simulation of solution exchange in wells was compared with experiment results. Both revealed that one solution can be exchanged by another one after a total volume of 200 µl has flown through. Using MCS, the adsorption of thiolated deoxyribonucleic acid (DNA) molecules and 6-mercapto-1-hexanol (MCH) on gold surfaces, and the DNA hybridization were performed. The nanomechanical response is in agreement with data reported by Fritz et al.1 Thus, the multiwell device is readily applicable for sensing of multiple chemical and biological recognition events in a single step. In this context controlled release and uptake of drugs are currently widely discussed. As a model system, we have used polystyrene (PS) spheres with diameters in the order of µm. The swelling behavior of individual PS spheres in toluene vapor was studied via mass loading by means of micromechanical cantilever sensors. For 4–8% cross-linked PS a mass increase of 180% in saturated toluene vapor was measured. In addition, the diameter change in saturated toluene vapor was measured and the corresponding volume increase of 200% was calculated. The mass of the swollen PS sphere decreases with increasing exposure time to ultraviolet (UV) light. The swelling response is significantly different between the first and the second exposure to toluene vapor. This is attributed to the formation of a cross-linked shell at the surface of the PS spheres. Shape persistent parts were observed for locally UV irradiated PS spheres. These PS spheres were found to be fluorescent and cracks occur after exposure in toluene liquid. The diffusion time of dye molecules in PS spheres increases with increasing chemical cross-linking density. This concept of locally dissolving non cross-linked PS from the sphere was applied to fabricate donut structures on surfaces. Arrays of PS spheres were fabricated using spin coating. The donut structure was produced simply after liquid solvent rinsing. The complete cross-linking of PS spheres was found after long exposure time to UV. We found that stabilizers play a major role in the formation of the donut nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-Vinylamidderivate sind eine toxikologische unbedenkliche Monomerklasse. Mit diesen Monomeren wurden verschiedene technische Anwendungsgebiete im Bereich der Kern-Schale-Partikel und der fließfähigen und vernetzten Hydrogele untersucht. Kern-Schale-Partikel Für die Synthese von Kern-Schale-Partikeln wurden die N-Vinylamidderivate als Schalenpolymere auf kommerziellen Poly(styrol-stat.-butadien)-Kernpartikeln aufpolymerisiert. Mit Hilfe verschiedener Untersuchungsmethoden (DLS, SEM, FFF, Ultrazentrifuge) wurde die Kern-Schale-Strukturbildung und die Effizienz der Pfropfungsreaktion untersucht und eine erfolgreiche Synthese der Kern-Schale-Partikel belegt. Durch die gezielte Modifizierung des Schalenpolymers wurde ein kationisches, organisches Mikropartikelsystem entwickelt, charakterisiert und auf die Eignung als „Duales Flockungsmittel“ untersucht. Diese Versuche belegten die Eignung der modifizierten Kern-Schale-Partikel als „Duales Flockungsmittel“ und bieten eine Alternative zu kommerziell verwendeten Retentionsmitteln. Außerdem wurden die filmbildenden Eigenschaften der Poly(N﷓vinylformamid)-Kern-Schale-Dispersionen untersucht. Nach der Verfilmung der Dispersionen wurden transparente und harte Filme erhalten. Die Auswirkungen auf die mechanischen Eigenschaften der Filme wurden durch die Variation verschiedener Parameter eingehend studiert. Auf der Basis dieser Partikel wurden selbstvernetzende Dispersionssysteme entwickelt. Das P﷓(VFA)-Schalenpolymer wurde teilweise hydrolysiert und die generierten freien Aminogruppen des Poly(N-vinylamins) durch eine Michael-Addition mit einem divinylfunktionalisierten Acrylat (Tetraethylenglykoldiacrylat) vernetzt. Untersuchungen zur mechanischen Beständigkeit der Filme zeigten bei geringen Vernetzungsgraden eine deutliche Optimierung der maximalen Zugbelastungen. Die Untersuchungen belegten, dass die Verwendung des selbstvernetzenden Dispersionssystems als Dispersion für eine Polymerbeschichtung möglich ist. Hydrogele Die Synthese von fließfähigen und quervernetzten Hydrogelen erfolgte auf der Basis verschiedener N﷓Vinylamide. Mit Hilfe geeigneter Vernetzer wurden feste Hydrogelplatten synthetisiert und für die Auftrennung von DNA-Sequenzen mit Hilfe der Gelelektrophorese verwendet. Scharfe und gute Auftrennung der verschiedenen „DNA-Ladder Standards“ wurden durch die Variation des Vernetzeranteils, der Polymerzusammensetzung, der angelegten Spannung und der Verweilzeit in der Gelelektrophoresekammer mit P﷓(MNVA)-Hydrogelplatten erreicht. Fließfähige und quervernetzte Elektrolytgele auf Poly-(N-vinylamid)-Basis wurden in wartungsfreien pH﷓Elektroden eingesetzt. Die Eignung dieser Hydrogele wurden in Bezug auf die Anwendung eingehend charakterisiert. Elektroden befüllt mit Poly(N-vinylamid)-Gelen wurden in Dauerbelastungsexperimenten, direkt mit kommerziellen pH﷓Elektroden verglichen. Es konnte gezeigt werden, dass die fließfähigen und quervernetzten Poly-(N-vinylamid)-Elektrolytgele in ihren Messeigenschaften gleichwertige bzw. bessere Potentialstabilitäten aufweisen als kommerzielle Referenzelektroden. Die Hydrogele auf Basis von Poly(N-vinylamidderivaten) boten für die beiden getesteten Anwendungen eine toxikologisch unbedenkliche Alternative zu Poly(acrylamid)-Gelen. In dieser Arbeit konnten die durchgeführten Untersuchungen belegen, dass N﷓Vinylamide eine attraktive Monomerklasse ist, die erfolgreich in vielen technischen Anwendungen einsetzbar ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit wird die Herstellung und Anwendung von funktionalen Polymer-Opalen beschrieben. Für die Synthese von funktionalen monodipsersen Kolloiden, den Bausteinen der Opale, wird die emulgatorfreie Emulsionspolymerisation (SFEP) verwendet. Je nach einzubauendem funktionalem Molekül werden verschiedene Varianten der SFEP verwendet, wie z. B. Homopolymerisation, Copolymerisation, Polymerisation mit Fremdstoffen und die Herstellung von Kern-Schale-Kolloiden. Die so hergestellten monodispersen Kolloide formen durch Selbstorganisation über horizontale (Aufpipettieren, Rakeln, Sprühen) oder vertikale Kristallisation (Ziehmaschine)hochqualitative künstliche Opale. Die eingebauten Funktionalitäten öffnen den Weg zu einer Vielzahl von Anwendungen. Über die Spaltung von funktionalen Estergruppen kann eine lichtinduzierte Strukturierung durchgeführt werden. Der Einbau von Epoxidgruppen ermöglicht eine makroskopische Vernetzung wodurch die mechanische Stabilität der Struktur erhöht wird. Der Einsatz von Reaktivestern kann zur Oberflächen- funktionalisierung verwendet werden. Durch Replizierung der Struktur zum inversen Opal können weitere funktionale Materialien eingeführt werden, was die Einsatzmöglichkeiten noch erweitert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imidazolium types of ionic liquids were immobilized by tethering it to acrylate backbone. These imidazolium salt containing acrylate monomers were polymerize at 70oC by free radical polymerization to give polymers poly(AcIm-n) with n being the side chain lenght. The chemical structure of the polymer electrolytes obtained by the described synthetic routes was investigated by NMR-spectroscopy. The polymers were doped with various amounts of H3PO4 and LiN(SO2CF3)2, to obtain poly(AcIm-n) x H3PO4 and poly(AcIm-2-Li) x LiN(SO2CF3)2. The TG curves show that the polymer electrolytes are thermally stable up to about 200◦C. DSC results indicates the softening effect of the length of the spacers (n) as well as phosphoric acid. The proton conductivity of the samples increase with x and reaches to 10-2 Scm-1 at 120oC for both poly(AcIm-2)2H3PO4 and poly(AcIm-6)2H3PO4. It was observed that the lithium ion conductivity of the poly(AcIm-2-Li) x LiN(SO2CF3)2 increases with blends (x) up to certain composition and then leveled off independently from blend content. The conductivity reaches to about 10-5 S cm-1 at 30oC and 10-3 at 100oC for poly(AcIm-2-Li) x LiN(SO2CF3)2 where x is 10. The phosphate and phosphoric acid functionality in the resulting polymers, poly(AcIm-n) x H3PO4, undergoes condensation leading to the formation of cross-linked materials at elevated temperature which may improve the mechanical properties to be used as membrane materials in fuel cells. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to obtain information about hydrogen bonding in solids. The low Tg enhances molecular mobility and this leads to better resolved resonances in both the backbone region and side chain region. The mobile and immobile protons can be distinguished by comparing 1H MAS and 1H-DQF NMR spectra. The interaction of the protons which may contribute to the conductivity is observed from the 2D double quantum correlation (DQC) spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence correlation spectroscopy (FCS) is a powerful technique to determine the diffusion of fluorescence molecules in various environments. The technique is based on detecting and analyzing the fluctuation of fluorescence light emitted by fluorescence species diffusing through a small and fixed observation volume, formed by a laser focused into the sample. Because of its great potential and high versatility in addressing the diffusion and transport properties in complex systems, FCS has been successfully applied to a great variety of systems. In my thesis, I focused on the application of FCS to study the diffusion of fluorescence molecules in organic environments, especially in polymer melts. In order to examine our FCS setup and a developed measurement protocol, I first utilized FCS to measure tracer diffusion in polystyrene (PS) solutions, for which abundance data exist in the literature. I studied molecular and polymeric tracer diffusion in polystyrene solutions over a broad range of concentrations and different tracer and matrix molecular weights (Mw). Then FCS was further established to study tracer dynamics in polymer melts. In this part I investigated the diffusion of molecular tracers in linear flexible polymer melts [polydimethylsiloxane (PDMS), polyisoprene (PI)], a miscible polymer blend [PI and poly vinyl ethylene (PVE)], and star-shaped polymer [3-arm star polyisoprene (SPI)]. The effects of tracer sizes, polymer Mw, polymer types, and temperature on the diffusion coefficients of small tracers were discussed. The distinct topology of the host polymer, i.e. star polymer melt, revealed the notably different motion of the small tracer, as compared to its linear counterpart. Finally, I emphasized the advantage of the small observation volume which allowed FCS to investigate the tracer diffusions in heterogeneous systems; a swollen cross-linked PS bead and silica inverse opals, where high spatial resolution technique was required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit werden Strukturen beschrieben, die mit Polymeren auf Oberflächen erzeugt wurden. Die Anwendungen reichen von PMMA und PNIPAM Polymerbürsten, über die Restrukturierung von Polystyrol durch Lösemittel bis zu 3D-Strukturen, die aus PAH/ PSS Polyelektrolytmultischichten bestehen. Im ersten Teil werden Polymethylmethacrylat (PMMA) Bürsten in der ionischen Flüssigkeit 1-Butyl-3-Methylimidazolium Hexafluorophospat ([Bmim][PF6]) durch kontrollierte radikalische Polymerisation (ATRP) hergestellt. Kinetische Untersuchungen zeigten ein lineares und dichtes Bürstenwachstum mit einer Wachstumsrate von 4600 g/mol pro nm. Die durchschnittliche Pfropfdichte betrug 0.36 µmol/m2. Als Anwendung wurden Mikrotropfen bestehend aus der ionischen Flüssigkeit, Dimethylformamid und dem ATRP-Katalysator benutzt, um in einer definierten Geometrie Polymerbürsten auf Silizium aufzubringen. Auf diese Weise lässt sich eine bis zu 13 nm dicke Beschichtung erzeugen. Dieses Konzept ist durch die Verdampfung des Monomers Methylmethacrylat (MMA) limitiert. Aus einem 1 µl großen Tropfen aus ionischer Flüssigkeit und MMA (1:1) verdampft MMA innerhalb von 100 s. Daher wurde das Monomer sequentiell zugegeben. Der zweite Teil konzentriert sich auf die Strukturierung von Oberflächen mit Hilfe einer neuen Methode: Tintendruck. Ein piezoelektrisch betriebenes „Drop-on-Demand“ Drucksystem wurde verwendet, um Polystyrol mit 0,4 nl Tropfen aus Toluol zu strukturieren. Die auf diese Art und Weise gebildeten Mikrokrater können Anwendung als Mikrolinsen finden. Die Brennweite der Mikrolinsen kann über die Anzahl an Tropfen, die für die Strukturierung verwendet werden, eingestellt werden. Theoretisch und experimentell wurde die Brennweite im Bereich von 4,5 mm bis 0,21 mm ermittelt. Der zweite Strukturierungsprozess nutzt die Polyelektrolyte Polyvinylamin-Hydrochlorid (PAH) und Polystyrolsulfonat (PSS), um 3D-Strukturen wie z.B. Linien, Schachbretter, Ringe, Stapel mit einer Schicht für Schicht Methode herzustellen. Die Schichtdicke für eine Doppelschicht (DS) liegt im Bereich von 0.6 bis 1.1 nm, wenn NaCl als Elektrolyt mit einer Konzentration von 0,5 mol/l eingesetzt wird. Die Breite der Strukturen beträgt im Mittel 230 µm. Der Prozess wurde erweitert, um Nanomechanische Cantilever Sensoren (NCS) zu beschichten. Auf einem Array bestehend aus acht Cantilevern wurden je zwei Cantilever mit fünf Doppelschichten PAH/ PSS und je zwei Cantilever mit zehn Doppelschichten PAH/ PSS schnell und reproduzierbar beschichtet. Die Massenänderung für die individuellen Cantilever war 0,55 ng für fünf Doppelschichten und 1,08 ng für zehn Doppelschichten. Der daraus resultierende Sensor wurde einer Umgebung mit definierter Luftfeuchtigkeit ausgesetzt. Die Cantilever verbiegen sich durch die Ausdehnung der Beschichtung, da Wasser in das Polymer diffundiert. Eine maximale Verbiegung von 442 nm bei 80% Luftfeuchtigkeit wurde für die mit zehn Doppelschichten beschichteten Cantilever gefunden. Dies entspricht einer Wasseraufnahme von 35%. Zusätzlich konnte aus den Verbiegungsdaten geschlossen werden, dass die Elastizität der Polyelektrolytmultischichten zunimmt, wenn das Polymer gequollen ist. Das thermische Verhalten in Wasser wurde im nächsten Teil an nanomechanischen Cantilever Sensoren, die mit Poly(N-isopropylacrylamid)bürsten (PNIPAM) und plasmapolymerisiertem N,N-Diethylacrylamid beschichtet waren, untersucht. Die Verbiegung des Cantilevers zeigte zwei Bereiche: Bei Temperaturen kleiner der niedrigsten kritischen Temperatur (LCST) ist die Verbiegung durch die Dehydration der Polymerschicht dominiert und bei Temperaturen größer der niedrigsten kritischen Temperatur (LCST) reagiert der Cantilever Sensor überwiegend auf Relaxationsprozesse innerhalb der kollabierten Polymerschicht. Es wurde gefunden, dass das Minimum in der differentiellen Verbiegung mit der niedrigsten kritischen Temperatur von 32°C und 44°C der ausgewählten Polymeren übereinstimmt. Im letzten Teil der Arbeit wurden µ-Reflektivitäts- und µ-GISAXS Experimente eingeführt als neue Methoden, um mikrostrukturierte Proben wie NCS oder PEM Linien mit Röntgenstreuung zu untersuchen. Die Dicke von jedem individuell mit PMMA Bürsten beschichtetem NCS ist im Bereich von 32,9 bis 35,2 nm, was mit Hilfe von µ-Reflektivitätsmessungen bestimmt wurde. Dieses Ergebnis kann mit abbildender Ellipsometrie als komplementäre Methode mit einer maximalen Abweichung von 7% bestätigt werden. Als zweites Beispiel wurde eine gedruckte Polyelektrolytmultischicht aus PAH/PSS untersucht. Die Herstellungsprozedur wurde so modifiziert, dass Goldnanopartikel in die Schichtstruktur eingebracht wurden. Durch Auswertung eines µ-GISAXS Experiments konnte der Einbau der Partikel identifiziert werden. Durch eine Anpassung mit einem Unified Fit Modell wurde herausgefunden, dass die Partikel nicht agglomeriert sind und von einer Polymermatrix umgeben sind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diese Arbeit beschäftigt sich mit der Polymerfunktionalisierung formanisotroperrnNanopartikel wie TiO2 Nanostäbchen oder Kohlenstoff Nanoröhren. Dies dient derrnSolubilisierung und sterischen Stabilisierung in organischen Medien, da diesernionenfrei hergestellt werden können, was eine Nutzung für nanoskopische,rnelektrische Schaltkreise ermöglicht. Die Polymere wurden mittels der RAFTrn(reversible addition-fragmentation chain transfer) Polymerisation mit engenrnMolekulargewichtsverteilungen hergestellt. Im Detail wurden Ankergruppen inrnBlockcopolymere und an der Alphaposition eingeführt, welche eine Anbindung an diernNanopartikeloberfläche ermöglichen. Die Polymere wurden durch Variation derrnverschiedenen Blocklängen für eine bestmögliche Adsorption optimiert. Die sorngewonnenen Polymer funktionalisierten Nanopartikel zeigten eine gute Löslichkeit inrnorganischen Medien und zeigten zudem eine lyotropes, flüssigkristallinesrnPhasenverhalten. Dies war aufgrund der Formanisotropie zu erwarten, zeigte jedochrnebenfalls ein unerwartetes thermotropes Verhalten, welches durch die Polymerhüllernerzeugt wurde. Die Flüssigkristalle wurden eingehend mittels polarisierterrnMikroskopie und Differential Scanning Calorimetry (DSC) untersucht. Diernflüssigkristallinen Phasen aus Nanostäbchen und –röhren wurde dann zurrnOrientierung der anisotropen Nanopartikel benutzt und es konnten makroskopischrngeordnete Proben hergestellt werden. Die Polymerhülle um die Nanopartikelrnermöglichte es ebenfalls diese in Polymerfilme einzuarbeiten und sornNanopartikelverstärkte Kunststoffe herzustellen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperverzweigte Polymere erfuhren in den letzten Jahren immer mehr Beachtung, da sie im Vergleich zu ihren linearen Analoga besondere Eigenschaften besitzen. Im Jahre 2002 wurde die erste enzymkatalysierte Darstellung hyperverzweigter Poly(epsilon-caprolacton)e (hb-PCL) beschrieben. Hier ermöglichte das Konzept der konkurrierenden ringöffnenden Polymerisation und Polykondensation die Kontrolle der Eigenschaften des dargestellten Polymers. Detaillierte Untersuchungen in Hinblick auf Grenzen und Möglichkeiten, aber auch die Synthese im Technikumsmaßstab sind wesentliche Aspekte dieser Arbeit. Außerdem wird ein neues Konzept eingeführt, das Reknitting genannt wurde. Ziel desselben ist das Recycling kommerziellen, linearen PCLs mittels Umesterung zu hb-PCL durch Enzymkatalyse. Diese hb-PCLs zeigen vergleichbare Eigenschaften zu den aus den Comonomeren dargestellten. Ausgehend von hb-PCL sollte eine geeignete Route zu methacrylierten Vernetzerverbindungen entwickelt werden. Aus Mischungen derselben mit 2-Hydroxyethylmethacrylat wurden komplexe Netzwerkarchitekturen durch Copolymerisation erhalten. Diese Netzwerke wurden in Hinblick auf ihre mechanisch physikalischen Eigenschaften untersucht. Zuletzt wurden Screeningexperimente an anderen zyklischen Estern durchgeführt, da ein Transfer des oben vorgestellten Konzepts angestrebt wurde. Zwei neue hyperverzweigte Polymerklassen, hb-Poly(delta-valerolacton) und hb-Polytrimethylencarbonat wurden detaillierter untersucht und in Ihren Eigenschaften mit hb-PCL verglichen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden experimentelle Untersuchungen zu gepfropften Polymerfilmen durchgeführt. Dabei wurden endgepfropfte poly-methyl-methacrylate (PMMA) Bürsten hergestellt durch „grafting from“ Methoden und polystyrol (PS)/ poly-vinyl-methyl-ether (PVME) Polymerfilme gepfropft auf UV sensitiven Oberflächen untersucht. Zur Strukturuntersuchung wurden die hergestellten Systeme wurden mit Rasterkraftmikroskopie (engl.: Surface Probe Microscopy, SPM), Röntgen - und Neutronenreflektivitätsmessungen, sowie mit Röntgenstreuung unter streifenden Einfall (engl.: Grazing Incidence Small Angle X-Ray Scattering, GISAXS) untersucht. rnEs wurde gezeigt, dass ein aus der Transmissionsstreuung bekanntes Model auch für auch für die GISAXS Analyse polydisperser Polymerdomänen und Kolloidsysteme verwendet werden kann. Der maximale Fehler durch die gemachten Näherungen wurde auf < 20% abgeschätzt.rnErgebnisse aus der Strukturanalyse wurden mit mechanischen Filmeigenschaften verknüpft. Dazu wurden mechanische Spannungsexperimente durchgeführt. Hierzu wurden die zu untersuchenden Filme selektiv auf einzelne Mikro-Federbalken-Sensoren (engl.: Micro Cantilever Sensor, MCS) der MCS Arrays aufgebracht. Dies wurde durch Maskierungstechniken und Mikro-Kontaktdrucken bewerkstelligt. rnPhasenübergansexperimente der gepfropften PS/PVME Filme haben gezeigt, dass die Möglichkeit einer Polymer/Polymer Phasenseparation stark von Propfpunktdichte der gebundenen Polymerketten mit der Oberfläche abhängt. PS/PVME Filmsysteme mit hohen Pfropfpunktdichten zeigten keinen Phasenübergang. Bei niedrig gepfropften Filmsystemen waren hingegen Polymer/Polymer Phasenseparationen zu beobachten. Es wurde geschlussfolgert, dass die gepfropften Polymersysteme einen hinreichenden Grad an entropischen Freiheitsgraden benötigen um eine Phasenseparation zu zeigen. Mechanische Spannungsexperimente haben dabei das Verstehen der Phasenseparationsmechanismen möglich gemacht.rnAus Quellexperimenten dichtgepfropfter PMMA Bürsten, wurden Lösungsmittel-Polymer Wechselwirkungsparameter (-Parameter) bestimmt. Dabei wurde festgestellt, dass sich die erhaltenen Parameter aufgrund von Filmbenetzung und entropischen Effekten maßgeblich von den errechneten Bulkwerten unterscheiden. Weiterhin wurden nicht reversible Kettenverschlaufungseffekt beobachtet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies molecular dynamics simulations on two levels of resolution: the detailed level of atomistic simulations, where the motion of explicit atoms in a many-particle system is considered, and the coarse-grained level, where the motion of superatoms composed of up to 10 atoms is modeled. While atomistic models are capable of describing material specific effects on small scales, the time and length scales they can cover are limited due to their computational costs. Polymer systems are typically characterized by effects on a broad range of length and time scales. Therefore it is often impossible to atomistically simulate processes, which determine macroscopic properties in polymer systems. Coarse-grained (CG) simulations extend the range of accessible time and length scales by three to four orders of magnitude. However, no standardized coarse-graining procedure has been established yet. Following the ideas of structure-based coarse-graining, a coarse-grained model for polystyrene is presented. Structure-based methods parameterize CG models to reproduce static properties of atomistic melts such as radial distribution functions between superatoms or other probability distributions for coarse-grained degrees of freedom. Two enhancements of the coarse-graining methodology are suggested. Correlations between local degrees of freedom are implicitly taken into account by additional potentials acting between neighboring superatoms in the polymer chain. This improves the reproduction of local chain conformations and allows the study of different tacticities of polystyrene. It also gives better control of the chain stiffness, which agrees perfectly with the atomistic model, and leads to a reproduction of experimental results for overall chain dimensions, such as the characteristic ratio, for all different tacticities. The second new aspect is the computationally cheap development of nonbonded CG potentials based on the sampling of pairs of oligomers in vacuum. Static properties of polymer melts are obtained as predictions of the CG model in contrast to other structure-based CG models, which are iteratively refined to reproduce reference melt structures. The dynamics of simulations at the two levels of resolution are compared. The time scales of dynamical processes in atomistic and coarse-grained simulations can be connected by a time scaling factor, which depends on several specific system properties as molecular weight, density, temperature, and other components in mixtures. In this thesis the influence of molecular weight in systems of oligomers and the situation in two-component mixtures is studied. For a system of small additives in a melt of long polymer chains the temperature dependence of the additive diffusion is predicted and compared to experiments.