28 resultados para liquid-gas phase transition
Resumo:
In dieser Arbeit wurden die Phasenübergänge einer einzelnen Polymerkette mit Hilfe der Monte Carlo Methode untersucht. Das Bondfluktuationsmodell wurde zur Simulation benutzt, wobei ein attraktives Kastenpotential zwischen allen Monomeren der Polymerkette gewirkt hat. Drei Arten von Bewegungen sind eingeführt worden, um die Polymerkette richtig zu relaxieren. Diese sind die Hüpfbewegung, die Reptationsbewegung und die Pivotbewegung. Um die Volumenausschlußwechselwirkung zu prüfen und um die Anzahl der Nachbarn jedes Monomers zu bestimmen ist ein hierarchischer Suchalgorithmus eingeführt worden. Die Zustandsdichte des Modells ist mittels des Wang-Landau Algorithmus bestimmt worden. Damit sind thermodynamische Größen berechnet worden, um die Phasenübergänge der einzelnen Polymerkette zu studieren. Wir haben zuerst eine freie Polymerkette untersucht. Der Knäuel-Kügelchen Übergang zeigt sich als ein kontinuierlicher Übergang, bei dem der Knäuel zum Kügelchen zusammenfällt. Der Kügelchen-Kügelchen Übergang bei niedrigeren Temperaturen ist ein Phasenübergang der ersten Ordnung, mit einer Koexistenz des flüssigen und festen Kügelchens, das eine kristalline Struktur hat. Im thermodynamischen Limes sind die Übergangstemperaturen identisch. Das entspricht einem Verschwinden der flüssigen Phase. In zwei Dimensionen zeigt das Modell einen kontinuierlichen Knäuel-Kügelchen Übergang mit einer lokal geordneten Struktur. Wir haben ferner einen Polymermushroom, das ist eine verankerte Polymerkette, zwischen zwei repulsiven Wänden im Abstand D untersucht. Das Phasenverhalten der Polymerkette zeigt einen dimensionalen crossover. Sowohl die Verankerung als auch die Beschränkung fördern den Knäuel-Kügelchen Übergang, wobei es eine Symmetriebrechung gibt, da die Ausdehnung der Polymerkette parallel zu den Wänden schneller schrumpft als die senkrecht zu den Wänden. Die Beschränkung hindert den Kügelchen-Kügelchen Übergang, wobei die Verankerung keinen Einfluss zu haben scheint. Die Übergangstemperaturen im thermodynamischen Limes sind wiederum identisch im Rahmen des Fehlers. Die spezifische Wärme des gleichen Modells aber mit einem abstoßendem Kastenpotential zeigt eine Schottky Anomalie, typisch für ein Zwei-Niveau System.
Resumo:
Die Photoemissions-Elektronenmikroskopie ist eine hervorragend geeignete Methode zur Untersuchung dynamischer Vorgänge auf realen polykristallinen Oberflächen im sub-μm Bereich. Bei der Anwendung auf Adsorbatsysteme lassen sich geringe Bedeckungsunterschiede, sowie Adsorbatstrukturen und -phasen unterscheiden. Die Methode erlaubt dabei ein breites Anwendungsspektrum über weite Temperaturbereiche und Systeme unterschiedlichster Bindungsenergie. Bei der Chemisorption von Sauerstoff auf polykristallinen Metallen wird unterschiedliches Aufwachsverhalten in den Helligkeitswerten im Mikroskopbild widergespiegelt. Bei Kupferproben zeigen Oberflächen mit unterschiedlicher kristalliner Richtung aufgrund der Symmetrie des fcc-Gitters ein ähnliches Verhalten. Das hexagonale Gitter des Titans zeigt dagegen große Unterschiede im Adsorptionsverhalten in Abhängigkeit der kristallinen Richtung. Diese Unterschiede konnten auf verschiedene Haftkoeffizienten und Oxidationsstufen der Metalle zurückgeführt werden. In einem Modell zur Photostromanalyse konnte beim Kupfer der Übergang von verschiedenen Überstrukturen bei wachsender Bedeckung gezeigt und die Übergänge ermittelt werden.. Auf den Titanoberflächen wurde so das Wachstum der Oxide TiO, TiO2 und Ti2O3 unterschieden und die Übergänge des unterschiedlichen Wachstums ermittelt. Bei der thermischen Desorption der Schichten konnten unterschiedliche Haftkoeffizient auf einzelnen Kristalliten qualitativ gezeigt werden. Diese erstmalig eingesetzte Analysemethode weist Ähnlichkeiten zur Thermo-Desorptions-Spektroskopie (TDS) auf, zeigt jedoch ortsaufgelöst lokale Unterschiede auf polykristallinen Oberflächen. Bei thermisch gestützten Oberflächenreaktionen ließen sich die Reaktionskeime deutlich identifizieren und mit einer Grauwertanalyse konnte die Oxidation der karbidischen Lagen zu Kohlenmonoxid und die Metalloxidation unterschieden werden. Dabei konnte gezeigt werden, daß die Reaktionskeime nur an Plattengrenzen auftreten, nicht jedoch auf der Oberfläche. Durch die Aufrauhung der Plattengrenzen mit zunehmender Reaktionsdauer nimmt die Zahl der Reaktionskeime kontinuierlich zu, die laterale Ausdehnung der Einzelreaktionen bleibt aber konstant. Bei der Physisorption von Xenon auf Graphit wurde erstmals für die Photoemissionsmikroskopie die resonanten Anregung ausgenutzt. Die verschiedenen Phasen des Adsorbats können dabei deutlich unterschieden werden; bei niedrigen Temperaturen (40K) findet ein gleichmäßiges Wachstum auf der gesamten Oberfläche statt, bei höheren Temperaturen von 60-65K ist dagegen ein Inselwachstum in verschiedenen Phasen zu beobachten. Die zeitliche Entwicklung des Wachstums, die örtliche Lage der Phasen und die Phasenübergänge (gas, fest inkommensurabel, fest kommensurabel) konnten bestimmt werden. Bei der Desorption der Schichten konnten die einzelnen Phasen ebenfalls getrennt werden und das unterschiedliche Desorptionsverhalten sowie die Phasenübergänge selber verifiziert werden.
Resumo:
„Photovernetzbare flüssigkristalline Polymere unterschiedlicher Kettentopologien“, Patrick Beyer, Mainz 2007 Zusammenfassung In der vorliegenden Arbeit wurde die Synthese und Charakterisierung flüssigkristalliner Elastomere unterschiedlicher Polymertopologien vorgestellt. Dabei wurden Systeme synthetisiert, bei denen die mesogenen Einheiten entweder als Seitengruppen an ein Polymerrückgrat angebunden (Seitenkettenelastomere) oder direkt in die Polymerkette integriert (Hauptkettenelastomere) sind (siehe Abbildung). Bezüglich der Seitenkettensysteme konnten erstmals photovernetzbare smektische Seitenkettenpolymere, in denen aufgrund der Anknüpfung eines photoisomerisierbaren Azobenzols eine Photo- modulation der ferroelektrischen Eigenschaften möglich ist, dargestellt werden. Homöotrop orientierte freistehende Filme dieser Materialien konnten durch Spincoaten dargestellt und unter Ausnutzung des Dichroismus der Azobenzole durch geeignete Wahl der Bestrahlungsgeometrie photovernetzt werden. Aufbauend auf diesen Untersuchungen wurde anhand eines nicht vernetzbaren Modellsystems im Detail der Einfluss der trans-cis Isomerisierung des Azobenzols auf die ferroelektrischen Parameter untersucht. Durch zeitaufgelöste Messungen der Absorption der Azobenzole, der spontanen Polarisation und des Direktorneigungswinkels und Auswertung der kinetischen Prozesse konnte eine lineare Abhängigkeit der ferroelektrischen Eigenschaften vom Grad der Isomerisierungsreaktion festgestellt werden. Durch Vergleich dieser in der flüssigkristallinen Phase erhaltenen Ergebnisse mit der Kinetik der thermischen Reisomerisierung in Lösung (Toluol) konnte ferner eine deutliche Reduzierung der Relaxationszeiten in der anisotropen flüssigkristallinen Umgebung festgestellt und auf eine Absenkung der Aktivierungsenergie zurückgeführt werden. Makroskopische Formänderungen der Seitenkettenelastomere am Phasenübergang von der flüssigkristallinen in die isotrope Phase konnten jedoch nicht festgestellt werden. Aus diesem Grund wurden neue Synthesestrategien für die Darstellung von Hauptkettenelastomeren entwickelt, die sich aufgrund der direkten Kopplung von flüssigkristallinem Ordnungsgrad und Polymerkettenkonformation besser für die Herstellung thermischer Aktuatoren eignen. Auf Basis flüssigkristalliner Polymalonate konnten dabei lateral funktionalisierte smektische Hauptkettenpolymere synthetisiert werden, welche erstmals die Darstellung von LC-Hauptkettenelastomeren durch Photovernetzung in der flüssigkristallinen Phase erlauben. Durch laterale Bromierung konnte in diesen Systemen die Kristallisationstendenz der verwendeten Biphenyleinheiten unterdrückt werden. Bezüglich der Photovernetzung konnten zwei neue Synthesemethoden entwickelt werden, bei denen der Vernetzungsschritt entweder durch radikalische Polymerisation lateral angebundener Acrylatgruppen oder durch photoaktive Benzophenongruppen erfolgte. Basierend auf den Benzophenon funktionalisierten Systemen konnte ein neuartiges Verfahren zur Darstellung makroskopisch orientierter Hauptkettenelastomere durch Photovernetzung entwickelt werden. Die Elastomerproben, deren Ordnungsgrad durch Röntgenuntersuchungen ermittelt werden konnte, zeigen am Phasenübergang von der flüssigkristallinen in die isotrope Phase eine reversible Formänderung von 40%. Im Gegensatz zu anderen bekannten smektischen Systemen konnten die in dieser Arbeit vorgestellten Elastomere ohne Zerstörung der Phase bis zu 60% entlang der smektischen Schichtnormalen gestreckt werden, was im Kontext einer geringen Korrelation der smektischen Schichten in Hauptkettenelastomeren diskutiert wurde.
Resumo:
Tiefherd-Beben, die im oberen Erdmantel in einer Tiefe von ca. 400 km auftreten, werden gewöhnlich mit dem in gleicher Tiefe auftretenden druckabhängigen, polymorphen Phasenübergang von Olivine (α-Phase) zu Spinel (β-Phase) in Verbindung gebracht. Es ist jedoch nach wie vor unklar, wie der Phasenübergang mit dem mechanischen Versagen des Mantelmaterials zusammenhängt. Zur Zeit werden im Wesentlichen zwei Modelle diskutiert, die entweder Mikrostrukturen, die durch den Phasenübergang entstehen, oder aber die rheologischen Veränderungen des Mantelgesteins durch den Phasenübergang dafür verantwortlich machen. Dabei sind Untersuchungen der Olivin→Spinel Umwandlung durch die Unzugänglichkeit des natürlichen Materials vollständig auf theoretische Überlegungen sowie Hochdruck-Experimente und Numerische Simulationen beschränkt. Das zentrale Thema dieser Dissertation war es, ein funktionierendes Computermodell zur Simulation der Mikrostrukturen zu entwickeln, die durch den Phasenübergang entstehen. Des Weiteren wurde das Computer Modell angewandt um die mikrostrukturelle Entwicklung von Spinelkörnern und die Kontrollparameter zu untersuchen. Die Arbeit ist daher in zwei Teile unterteilt: Der erste Teil (Kap. 2 und 3) behandelt die physikalischen Gesetzmäßigkeiten und die prinzipielle Funktionsweise des Computer Modells, das auf der Kombination von Gleichungen zur Errechnung der kinetischen Reaktionsgeschwindigkeit mit Gesetzen der Nichtgleichgewichtsthermodynamik unter nicht-hydostatischen Bedingungen beruht. Das Computermodell erweitert ein Federnetzwerk der Software latte aus dem Programmpaket elle. Der wichtigste Parameter ist dabei die Normalspannung auf der Kornoberfläche von Spinel. Darüber hinaus berücksichtigt das Programm die Latenzwärme der Reaktion, die Oberflächenenergie und die geringe Viskosität von Mantelmaterial als weitere wesentliche Parameter in der Berechnung der Reaktionskinetic. Das Wachstumsverhalten und die fraktale Dimension von errechneten Spinelkörnern ist dabei in guter Übereinstimmung mit Spinelstrukturen aus Hochdruckexperimenten. Im zweiten Teil der Arbeit wird das Computermodell angewandt, um die Entwicklung der Oberflächenstruktur von Spinelkörnern unter verschiedenen Bedigungen zu eruieren. Die sogenannte ’anticrack theory of faulting’, die den katastrophalen Verlauf der Olivine→Spinel Umwandlung in olivinhaltigem Material unter differentieller Spannung durch Spannungskonzentrationen erklärt, wurde anhand des Computermodells untersucht. Der entsprechende Mechanismus konnte dabei nicht bestätigt werden. Stattdessen können Oberflächenstrukturen, die Ähnlichkeiten zu Anticracks aufweisen, durch Unreinheiten des Materials erklärt werden (Kap. 4). Eine Reihe von Simulationen wurde der Herleitung der wichtigsten Kontrollparameter der Reaktion in monomineralischem Olivin gewidmet (Kap. 5 and Kap. 6). Als wichtigste Einflüsse auf die Kornform von Spinel stellten sich dabei die Hauptnormalspannungen auf dem System sowie Heterogenitäten im Wirtsminerals und die Viskosität heraus. Im weiteren Verlauf wurden die Nukleierung und das Wachstum von Spinel in polymineralischen Mineralparagenesen untersucht (Kap. 7). Die Reaktionsgeschwindigkeit der Olivine→Spinel Umwandlung und die Entwicklung von Spinelnetzwerken und Clustern wird durch die Gegenwart nicht-reaktiver Minerale wie Granat oder Pyroxen erheblich beschleunigt. Die Bildung von Spinelnetzwerken hat das Potential, die mechanischen Eigenschaften von Mantelgestein erheblich zu beeinflussen, sei es durch die Bildung potentieller Scherzonen oder durch Gerüstbildung. Dieser Lokalisierungprozess des Spinelwachstums in Mantelgesteinen kann daher ein neues Erklärungsmuster für Tiefbeben darstellen.
Resumo:
In dieser Arbeit werden Synthesen und Eigenschaften von Verbindungen mit einer oder mehreren Ferrocen- bzw. Biferroceneinheiten beschrieben, die über Amid-, Anhydrid- oder Harnstoff-Funktionen verknüpft oder mittels Amidfunktion an α-Aminosäurederivate gebunden sind. Als Zentralbausteine dienen die künstlichen Aminosäuren 1’-Aminoferrocen-1-carbonsäure (Fca) bzw. 1’-Aminobiferrocen-1-carbonsäure (Bfca). Die Ferroceneinheit agiert als redoxschaltbares Gelenk, die Amidfunktion ermöglicht die Ausbildung von Sekundärstrukturen und die Bindung von Anionen. Das redoxschaltbare „Multiwellenlängen“-Sensorpaar [Dansyl-Ala-Fca-Ala-CH2-Naphthyl]0/+ ist in der Lage, insgesamt sieben Anionen aufgrund von sechs einfach zu erhaltenden optischen Messwerten eindeutig zu diskriminieren. Die Vorzugskonformation des neutralen Rezeptors mit intramolekularen Wasserstoffbrücken wird mittels X-Ray, NMR- und DFT-Methoden im Festkörper, in Lösung und in der Gasphase bestimmt. Die oligomeren Fca-Verbindungen SG-Fcan-HN-Fc (SG = Boc, Fmoc; n = 1, 2) und SG-Fca2-OMe (SG = Boc, Fmoc) werden mittels Peptidkupplung in Lösung hergestellt, Fmoc-Fca3-Gly-OMe, Fmoc-Fcan-OMe (n = 3-5) und Fmoc-Fca4-NH2 dagegen durch ein neu entwickeltes Festphasensynthese-Protokoll. Die amidverknüpften Verbindungen bilden eine „Zick-Zack“-Struktur mit 1,2’-Konformation der Fca-Einheiten und achtgliedrigen intramolekularen Wasserstoffbrücken-Ringen, wie durch X-Ray, 2D-NMR-, DFT-Methoden und Dipolmoment-Bestimmung gezeigt wird. Elektrochemische Experimente belegen eine elektronische Wechselwirkung der Eisenzentren. Die gemischt-valenten Verbindungen zeichnen sich durch IVCT-Banden im nahen Infrarot aus. Die elektronische Kopplungskonstante beträgt Hab ≈ 145-215 cm–1 für einen einzelnen FeII/FeIII-Übergang und belegt die Zugehörigkeit der Verbindungen zur Robin-Day-Klasse II. Im Festkörper sind die Valenzen gemäß Mößbauerspektren lokalisiert. Die vollständig oxidierten Verbindungen liegen nach DFT-Rechnungen nicht mehr in einer „Zick-Zack“-Struktur, sondern in einer gestreckten Konformation vor. Als Nebenprodukte bei der Amidkupplung werden die Anhydride SG-(Fca)2O (SG = Ac, Boc, Fmoc) isoliert. Diese zählen aufgrund des Fehlens einer IVCT-Bande zur Klasse I-II. Die ferrocenyloge Bfca wird in Form der N- und C-geschützten Bfca auf zwei Wegen synthetisiert. Schlüsselschritte stellen die Cu(II)-vermittelte Homokupplung bzw. die Pd-katalysierte Stille-Kupplung dar. Bfca und die amid- und harnstoffverknüpften Bis-Bfca-Verbindungen besitzen keine nachweisbare Vorzugskonformation in Lösung. Die gemischt-valenten Bfca-Kationen zeigen eine IVCT-Bande (Hab ≈ 300-600 cm–1) und gehören eher zur Klasse II-III. Die gemischt-valenten Verbindungen des als Nebenprodukt isolierten Tetraferrocenylstannans Sn[Fn(COOMe)4] (Fn = 1,1’-Ferrocenylen) mit einatomiger σ-Brücke zwischen den Ferroceneinheiten, zeigen IVCT-Banden im NIR-Spektrum und gehören somit zur Klasse II. Die elektronischen Kopplungen in Sn[Fn(COOMe)4]+/2+ betragen Hab ≈ 145 und 220 cm–1.
Resumo:
Sulfate aerosol plays an important but uncertain role in cloud formation and radiative forcing of the climate, and is also important for acid deposition and human health. The oxidation of SO2 to sulfate is a key reaction in determining the impact of sulfate in the environment through its effect on aerosol size distribution and composition. This thesis presents a laboratory investigation of sulfur isotope fractionation during SO2 oxidation by the most important gas-phase and heterogeneous pathways occurring in the atmosphere. The fractionation factors are then used to examine the role of sulfate formation in cloud processing of aerosol particles during the HCCT campaign in Thuringia, central Germany. The fractionation factor for the oxidation of SO2 by ·OH radicals was measured by reacting SO2 gas, with a known initial isotopic composition, with ·OH radicals generated from the photolysis of water at -25, 0, 19 and 40°C (Chapter 2). The product sulfate and the residual SO2 were collected as BaSO4 and the sulfur isotopic compositions measured with the Cameca NanoSIMS 50. The measured fractionation factor for 34S/32S during gas phase oxidation is αOH = (1.0089 ± 0.0007) − ((4 ± 5) × 10−5 )T (°C). Fractionation during oxidation by major aqueous pathways was measured by bubbling the SO2 gas through a solution of H2 O2
Resumo:
Microemulsions are thermodynamically stable, macroscopically homogeneous but microscopically heterogeneous, mixtures of water and oil stabilised by surfactant molecules. They have unique properties like ultralow interfacial tension, large interfacial area and the ability to solubilise other immiscible liquids. Depending on the temperature and concentration, non-ionic surfactants self assemble to micelles, flat lamellar, hexagonal and sponge like bicontinuous morphologies. Microemulsions have three different macroscopic phases (a) 1phase- microemulsion (isotropic), (b) 2phase-microemulsion coexisting with either expelled water or oil and (c) 3phase- microemulsion coexisting with expelled water and oil.rnrnOne of the most important fundamental questions in this field is the relation between the properties of the surfactant monolayer at water-oil interface and those of microemulsion. This monolayer forms an extended interface whose local curvature determines the structure of the microemulsion. The main part of my thesis deals with the quantitative measurements of the temperature induced phase transitions of water-oil-nonionic microemulsions and their interpretation using the temperature dependent spontaneous curvature [c0(T)] of the surfactant monolayer. In a 1phase- region, conservation of the components determines the droplet (domain) size (R) whereas in 2phase-region, it is determined by the temperature dependence of c0(T). The Helfrich bending free energy density includes the dependence of the droplet size on c0(T) as
Resumo:
In this thesis, anodic aluminum oxide (AAO) membranes, which provide well-aligned uniform mesoscopic pores with adjustable pore parameters, were fabricated and successfully utilized as templates for the fabrication of functional organic nanowires, nanorods and the respective well-ordered arrays. The template-assisted patterning technique was successfully applied for the realization of different objectives:rnHigh-density and well-ordered arrays of hole-conducting nanorods composed of cross-linked triphenylamine (TPA) and tetraphenylbenzidine (TPD) derivatives on conductive substrates like ITO/glass have been successfully fabricated. By applying a freeze-drying technique to remove the aqueous medium after the wet-chemical etching of the template, aggregation and collapsing of the rods was prevented and macroscopic areas of perfectly freestanding nanorods were feasible. Based on the hole-conducting nanorod arrays and their subsequent embedding into an electron-conducting polymer matrix via spin-coating, a novel routine concept for the fabrication of well-ordered all-organic bulk heterojunction for organic photovoltaic applications was successfully demonstrated. The increased donor/acceptor interface of the fabricated devices resulted in a remarkable increase of the photoluminescence quenching compared to a planar bilayer morphology. Further, the fundamental working principle of the templating approach for the solution-based all-organic photovoltaic device was demonstrated for the first time.rnFurthermore, in order to broaden the applicability of patterned surfaces, which are feasible via the template-based patterning of functional materials, AAO with hierarchically branched pores were fabricated and utilized as templates. By pursuing the common templating process hierarchically polymeric replicas, which show remarkable similarities with interesting biostructures, like the surface of the lotus leaf and the feet of a gecko, were successfully prepared.rnIn contrast to the direct infiltration of organic functional materials, a novel route for the fabrication of functional nanowires via post-modification of reactive nanowires was established. Therefore, reactive nanowires based on cross-linked pentafluorophenylesters were fabricated by utilizing AAO templates. The post-modification with fluorescent dyes was demonstrated. Furthermore, reactive wires were converted into well-dispersed poly(N-isopropylacrylamide) (PNIPAM) hydrogels, which exhibit a thermal-responsive reversible phase transition. The reversible thermal-responsible swelling of the PNIPAM nanowires exhibited a more than 50 % extended length than in the collapsed PNIPAM state. rnLast but not least, the shape-anisotropic pores of AAO were utilized to uniformly align the mesogens of a nematic liquid crystalline elastomer. Liquid crystalline nanowires with a narrow size distribution and uniform orientation of the liquid crystalline material were fabricated. It was shown that during the transition from the nematic to the isotropic phase the rod’s length shortened by roughly 40 percent. As such these liquid crystalline elastomeric nanowires may find application, as wire-shaped nanoactuators in various fields of research, like lab-on-chip systems, micro fluidics and biomimetics.rn
Resumo:
Computer-Simulationen von Kolloidalen Fluiden in Beschränkten Geometrien Kolloidale Suspensionen, die einen Phasenübergang aufweisen, zeigen eine Vielfalt an interessanten Effekten, sobald sie auf eine bestimmte Geometrie beschränkt werden, wie zum Beispiel auf zylindrische Poren, sphärische Hohlräume oder auf einen Spalt mit ebenen Wänden. Der Einfluss dieser verschiedenen Geometrietypen sowohl auf das Phasenverhalten als auch auf die Dynamik von Kolloid-Polymer-Mischungen wird mit Hilfe von Computer-Simulationen unter Verwendung des Asakura-Oosawa- Modells, für welches auf Grund der “Depletion”-Kräfte ein Phasenübergang existiert, untersucht. Im Fall von zylindrischen Poren sieht man ein interessantes Phasenverhalten, welches vom eindimensionalen Charakter des Systems hervorgerufen wird. In einer kurzen Pore findet man im Bereich des Phasendiagramms, in dem das System typischerweise entmischt, entweder eine polymerreiche oder eine kolloidreiche Phase vor. Sobald aber die Länge der zylindrischen Pore die typische Korrelationslänge entlang der Zylinderachse überschreitet, bilden sich mehrere quasi-eindimensionale Bereiche der polymerreichen und der kolloidreichen Phase, welche von nun an koexistieren. Diese Untersuchungen helfen das Verhalten von Adsorptionshysteresekurven in entsprechenden Experimenten zu erklären. Wenn das Kolloid-Polymer-Modellsystem auf einen sphärischen Hohlraum eingeschränkt wird, verschiebt sich der Punkt des Phasenübergangs von der polymerreichen zur kolloidreichen Phase. Es wird gezeigt, dass diese Verschiebung direkt von den Benetzungseigenschaften des Systems abhängt, was die Beobachtung von zwei verschiedenen Morphologien bei Phasenkoexistenz ermöglicht – Schalenstrukturen und Strukturen des Janustyps. Im Rahmen der Untersuchung von heterogener Keimbildung von Kristallen innerhalb einer Flüssigkeit wird eine neue Simulationsmethode zur Berechnung von Freien Energien der Grenzfläche zwischen Kristall- bzw. Flüssigkeitsphase undWand präsentiert. Die Resultate für ein System von harten Kugeln und ein System einer Kolloid- Polymer-Mischung werden anschließend zur Bestimmung von Kontaktwinkeln von Kristallkeimen an Wänden verwendet. Die Dynamik der Phasenseparation eines quasi-zweidimensionalen Systems, welche sich nach einem Quench des Systems aus dem homogenen Zustand in den entmischten Zustand ausbildet, wird mit Hilfe von einer mesoskaligen Simulationsmethode (“Multi Particle Collision Dynamics”) untersucht, die sich für eine detaillierte Untersuchung des Einflusses der hydrodynamischen Wechselwirkung eignet. Die Exponenten universeller Potenzgesetze, die das Wachstum der mittleren Domänengröße beschreiben, welche für rein zwei- bzw. dreidimensionale Systeme bekannt sind, können für bestimmte Parameterbereiche nachgewiesen werden. Die unterschiedliche Dynamik senkrecht bzw. parallel zu den Wänden sowie der Einfluss der Randbedingungen für das Lösungsmittel werden untersucht. Es wird gezeigt, dass die daraus resultierende Abschirmung der hydrodynamischen Wechselwirkungsreichweite starke Auswirkungen auf das Wachstum der mittleren Domänengröße hat.
Resumo:
Aerosol particles are strongly related to climate, air quality, visibility and human health issues. They contribute the largest uncertainty in the assessment of the Earth´s radiative budget, directly by scattering or absorbing solar radiation or indirectly by nucleating cloud droplets. The influence of aerosol particles on cloud related climatic effects essentially depends upon their number concentration, size and chemical composition. A major part of submicron aerosol consists of secondary organic aerosol (SOA) that is formed in the atmosphere by the oxidation of volatile organic compounds. SOA can comprise a highly diverse spectrum of compounds that undergo continuous chemical transformations in the atmosphere.rnThe aim of this work was to obtain insights into the complexity of ambient SOA by the application of advanced mass spectrometric techniques. Therefore, an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) was applied in the field, facilitating the measurement of ions of the intact molecular organic species. Furthermore, the high measurement frequency provided insights into SOA composition and chemical transformation processes on a high temporal resolution. Within different comprehensive field campaigns, online measurements of particular biogenic organic acids were achieved by combining an online aerosol concentrator with the APCI-IT-MS. A holistic picture of the ambient organic aerosol was obtained through the co-located application of other complementary MS techniques, such as aerosol mass spectrometry (AMS) or filter sampling for the analysis by liquid chromatography / ultrahigh resolution mass spectrometry (LC/UHRMS).rnIn particular, during a summertime field study at the pristine boreal forest station in Hyytiälä, Finland, the partitioning of organic acids between gas and particle phase was quantified, based on the online APCI-IT-MS and AMS measurements. It was found that low volatile compounds reside to a large extent in the gas phase. This observation can be interpreted as a consequence of large aerosol equilibration timescales, which build up due to the continuous production of low volatile compounds in the gas phase and/or a semi-solid phase state of the ambient aerosol. Furthermore, in-situ structural informations of particular compounds were achieved by using the MS/MS mode of the ion trap. The comparison to MS/MS spectra from laboratory generated SOA of specific monoterpene precursors indicated that laboratory SOA barely depicts the complexity of ambient SOA. Moreover, it was shown that the mass spectra of the laboratory SOA more closely resemble the ambient gas phase composition, indicating that the oxidation state of the ambient organic compounds in the particle phase is underestimated by the comparison to laboratory ozonolysis. These observations suggest that the micro-scale processes, such as the chemistry of aerosol aging or the gas-to-particle partitioning, need to be better understood in order to predict SOA concentrations more reliably.rnDuring a field study at the Mt. Kleiner Feldberg, Germany, a slightly different aerosol concentrator / APCI-IT-MS setup made the online analysis of new particle formation possible. During a particular nucleation event, the online mass spectra indicated that organic compounds of approximately 300 Da are main constituents of the bulk aerosol during ambient new particle formation. Co-located filter analysis by LC/UHRMS analysis supported these findings and furthermore allowed to determine the molecular formulas of the involved organic compounds. The unambiguous identification of several oxidized C 15 compounds indicated that oxidation products of sesquiterpenes can be important compounds for the initial formation and subsequent growth of atmospheric nanoparticles.rnThe LC/UHRMS analysis furthermore revealed that considerable amounts of organosulfates and nitrooxy organosulfates were detected on the filter samples. Indeed, it was found that several nitrooxy organosulfate related APCI-IT-MS mass traces were simultaneously enhanced. Concurrent particle phase ion chromatography and AMS measurements indicated a strong bias between inorganic sulfate and total sulfate concentrations, supporting the assumption that substantial amounts of sulfate was bonded to organic molecules.rnFinally, the comprehensive chemical analysis of the aerosol composition was compared to the hygroscopicity parameter kappa, which was derived from cloud condensation nuclei (CCN) measurements. Simultaneously, organic aerosol aging was observed by the evolution of a ratio between a second and a first generation biogenic oxidation product. It was found that this aging proxy positively correlates with increasing hygroscopicity. Moreover, it was observed that the bonding of sulfate to organic molecules leads to a significant reduction of kappa, compared to an internal mixture of the same mass fractions of purely inorganic sulfate and organic molecules. Concluding, it has been shown within this thesis that the application of modern mass spectrometric techniques allows for detailed insights into chemical and physico-chemical processes of atmospheric aerosols.rn
Resumo:
Die Kontroverse über den Glasübergang im Nanometerbereich, z. B. die Glas¬über¬gangs-temperatur Tg von dünnen Polymerfilmen, ist nicht vollständig abgeschlossen. Das dynamische Verhalten auf der Nanoskala ist stark von den einschränkenden Bedingungen abhängig, die auf die Probe wirken. Dünne Polymerfilme sind ideale Systeme um die Dynamik von Polymerketten unter der Einwirkung von Randbedingungen zu untersuchen, wie ich sie in dieser Arbeit variiert habe, um Einblick in dieses Problem zu erhalten.rnrnResonanzverstärkte dynamische Lichtstreuung ist eine Methode, frei von z.B. Fluoreszenzmarkern, die genutzt werden kann um in dünnen Polymerfilmen dynamische Phänomene
Resumo:
Flüssigkristalline Elastomere (LCE) zeigen eine reversible Kontraktion und werden in der Literatur auch als „künstliche Muskeln“ bezeichnet. In dieser Arbeit werden sie mit einem integrierten Heizer versehen, um eine schnelle und präzise Ansteuerung zu ermöglichen. Anschließend werden diese als Aktoren zur Realisierung eines technischen Nachbaus des menschlichen Auges verwendet. rnDas einzigartige Verhalten der flüssigkristallinen Elastomere beruht auf der Kombination der Entropie Elastizität des Elastomers mit der Selbstorganisation der flüssigkristallinen Einheiten (Mesogene). Diese beiden Eigenschaften ermöglichen eine reversible, makroskopische Verformung beim Phasenübergang des Flüssigkristalls in die isotrope Phase. Hierbei ist es wichtig eine homogene Orientierung der Mesogene zu erzeugen, was in dieser Arbeit durch ein Magnetfeld erreicht wird. Da es sich um ein thermotropes flüssigkristallines Elastomer handelt, werden in dieser Arbeit zwei Ansätze vorgestellt, um den LCE intern zu heizen. Zum einen werden Kohlenstoffnanoröhren integriert, um diese über Strahlung oder Strom zu heizen und zum anderen wird ein flexibler Heizdraht integriert, welcher ebenfalls über Strom geheizt wird. rnUm den technischen Nachbau des menschlichen Auges zu realisieren, ist die Herstellung einer flüssigkristallinen Iris gezeigt. Hierzu wird ein radiales Magnetfeld aufgebaut, welches eine radiale Orientierung des Mesogene ermöglicht, wodurch wiederum eine radiale Kontraktion ermöglicht wird. Außerdem sind zwei Konzepte vorgestellt, um eine Elastomer Linse zu verformen. Zum einen wird diese mit einem ringförmigen LCE auseinandergezogen und somit abgeflacht. Zum anderen sind acht Aktoren über Anker an einer Linse angebracht, welche ebenfalls eine Vergrößerung der Linse bewirken. In beiden Fällen werden LCE mit dem zuvor präsentierten integrierten Heizdraht verwendet. Abschließend ist das Zusammensetzen des technische Nachbaus des menschlichen Auges dargestellt, sowie Aufnahmen, welche mit diesem erzeugt wurden.
Resumo:
Die Erdatmosphäre besteht hauptsächlich aus Stickstoff (78%), Sauerstoff (21%) und Edelga¬sen. Obwohl Partikel weniger als 0,1% ausmachen, spielen sie eine entscheidende Rolle in der Chemie und Physik der Atmosphäre, da sie das Klima der Erde sowohl direkt als auch indirekt beeinflussen. Je nach Art der Bildung unterscheidet man zwischen primären und sekundären Partikeln, wobei primäre Partikel direkt in die Atmosphäre eingetragen werden. Sekundäre Partikel hingegen entstehen durch Kondensation von schwerflüchtigen Verbindungen aus der Gasphase, welche durch Reaktionen von gasförmigen Vorläufersubstanzen (volatile organic compounds, VOCs) mit atmosphärischen Oxidantien wie Ozon oder OH-Radikalen gebildet werden. Da die meisten Vorläufersubstanzen organischer Natur sind, wird das daraus gebil¬dete Aerosol als sekundäres organisches Aerosol (SOA) bezeichnet. Anders als die meisten primären Partikel stammen die VOCs überwiegend aus biogenen Quellen. Es handelt sich da¬bei um ungesättigte Kohlenwasserstoffe, die bei intensiver Sonneneinstrahlung und hohen Temperaturen von Pflanzen emittiert werden. Viele der leichtflüchtigen Vorläufersubstanzen sind chiral, sowohl die Vorläufer als auch die daraus gebildeten Partikel werden aber in den meisten Studien als eine Verbindung betrachtet und gemeinsam analysiert. Die mit Modellen berechneten SOA-Konzentrationen, welche auf dieser traditionellen Vorstellung der SOA-Bil¬dung beruhen, liegen deutlich unterhalb der in der Atmosphäre gefundenen, so dass neben diesem Bildungsweg auch noch andere SOA-Bildungsarten existieren müssen. Aus diesem Grund wird der Fokus der heutigen Forschung vermehrt auf die heterogene Chemie in der Partikelphase gerichtet. Glyoxal als Modellsubstanz kommt hierbei eine wichtige Rolle zu. Es handelt sich bei dieser Verbindung um ein Molekül mit einem hohen Dampfdruck, das auf Grund dieser Eigenschaft nur in der Gasphase zu finden sein sollte. Da es aber über zwei Alde¬hydgruppen verfügt, ist es sehr gut wasserlöslich und kann dadurch in die Partikelphase über¬gehen, wo es heterogenen chemischen Prozessen unterliegt. Unter anderem werden in An¬wesenheit von Ammoniumionen Imidazole gebildet, welche wegen der beiden Stickstoff-He¬teroatome lichtabsorbierende Eigenschaften besitzen. Die Verteilung von Glyoxal zwischen der Gas- und der Partikelphase wird durch das Henrysche Gesetz beschrieben, wobei die Gleichgewichtskonstante die sogenannte Henry-Konstante ist. Diese ist abhängig von der un¬tersuchten organischen Verbindung und den im Partikel vorhandenen anorganischen Salzen. Für die Untersuchung chiraler Verbindungen im SOA wurde zunächst eine Filterextraktions¬methode entwickelt und die erhaltenen Proben anschließend mittels chiraler Hochleistungs-Flüssigchromatographie, welche an ein Elektrospray-Massenspektrometer gekoppelt war, analysiert. Der Fokus lag hierbei auf dem am häufigsten emittierten Monoterpen α-Pinen und seinem Hauptprodukt, der Pinsäure. Da bei der Ozonolyse des α-Pinens das cyclische Grund¬gerüst erhalten bleibt, können trotz der beiden im Molekül vorhanden chiralen Zentren nur zwei Pinsäure Enantiomere gebildet werden. Als Extraktionsmittel wurde eine Mischung aus Methanol/Wasser 9/1 gewählt, mit welcher Extraktionseffizienzen von 65% für Pinsäure Enan¬tiomer 1 und 68% für Pinsäure Enantiomer 2 erreicht werden konnten. Des Weiteren wurden Experimente in einer Atmosphärensimulationskammer durchgeführt, um die Produkte der α-Pinen Ozonolyse eindeutig zu charakterisieren. Enantiomer 1 wurde demnach aus (+)-α-Pinen gebildet und Enantiomer 2 entstand aus (-)-α-Pinen. Auf Filterproben aus dem brasilianischen Regenwald konnte ausschließlich Pinsäure Enantiomer 2 gefunden werden. Enantiomer 1 lag dauerhaft unterhalb der Nachweisgrenze von 18,27 ng/mL. Im borealen Nadelwald war das Verhältnis umgekehrt und Pinsäure Enantiomer 1 überwog vor Pinsäure Enantiomer 2. Das Verhältnis betrug 56% Enantiomer 1 zu 44% Enantiomer 2. Saisonale Verläufe im tropischen Regenwald zeigten, dass die Konzentrationen zur Trockenzeit im August höher waren als wäh¬rend der Regenzeit im Februar. Auch im borealen Nadelwald wurden im Sommer höhere Kon¬zentrationen gemessen als im Winter. Die Verhältnisse der Enantiomere änderten sich nicht im jahreszeitlichen Verlauf. Die Bestimmung der Henry-Konstanten von Glyoxal bei verschiedenen Saataerosolen, nämlich Ammoniumsulfat, Natriumnitrat, Kaliumsulfat, Natriumchlorid und Ammoniumnitrat sowie die irreversible Produktbildung aus Glyoxal in Anwesenheit von Ammoniak waren Forschungs¬gegenstand einer Atmosphärensimulationskammer-Kampagne am Paul-Scherrer-Institut in Villigen, Schweiz. Hierzu wurde zunächst das zu untersuchende Saataerosol in der Kammer vorgelegt und dann aus photochemisch erzeugten OH-Radikalen und Acetylen Glyoxal er¬zeugt. Für die Bestimmung der Glyoxalkonzentration im Kammeraerosol wurde zunächst eine beste¬hende Filterextraktionsmethode modifiziert und die Analyse mittels hochauflösender Mas¬senspektrometrie realisiert. Als Extraktionsmittel kam 100% Acetonitril, ACN zum Einsatz wo¬bei die Extraktionseffizienz bei 85% lag. Für die anschließende Derivatisierung wurde 2,4-Di¬nitrophenylhydrazin, DNPH verwendet. Dieses musste zuvor drei Mal mittels Festphasenex¬traktion gereinigt werden um störende Blindwerte ausreichend zu minimieren. Die gefunde¬nen Henry-Konstanten für Ammoniumsulfat als Saataerosol stimmten gut mit in der Literatur gefundenen Werten überein. Die Werte für Natriumnitrat und Natriumchlorid als Saataerosol waren kleiner als die von Ammoniumsulfat aber größer als der Wert von reinem Wasser. Für Ammoniumnitrat und Kaliumsulfat konnten keine Konstanten berechnet werden. Alle drei Saataerosole führten zu einem „Salting-in“. Das bedeutet, dass bei Erhöhung der Salzmolalität auch die Glyoxalkonzentration im Partikel stieg. Diese Beobachtungen sind auch in der Litera¬tur beschrieben, wobei die Ergebnisse dort nicht auf der Durchführung von Kammerexperi¬menten beruhen, sondern mittels bulk-Experimenten generiert wurden. Für die Trennung der Imidazole wurde eine neue Filterextraktionsmethode entwickelt, wobei sich ein Gemisch aus mit HCl angesäuertem ACN/H2O im Verhältnis 9/1 als optimales Extrak¬tionsmittel herausstellte. Drei verschiedenen Imidazole konnten mit dieser Methode quanti¬fiziert werden, nämlich 1-H-Imidazol-4-carbaldehyd (IC), Imidazol (IM) und 2,2‘-Biimidazol (BI). Die Effizienzen lagen für BI bei 95%, für IC bei 58% und für IM bei 75%. Kammerexperimente unter Zugabe von Ammoniak zeigten höhere Imidazolkonzentrationen als solche ohne. Wurden die Experimente ohne Ammoniak in Anwesenheit von Ammoni¬umsulfat durchgeführt, wurden höhere Imidazol-Konzentrationen gefunden als ohne Ammo¬niumionen. Auch die relative Luftfeuchtigkeit spielte eine wichtige Rolle, da sowohl eine zu hohe als auch eine zu niedrige relative Luftfeuchtigkeit zu einer verminderten Imidazolbildung führte. Durch mit 13C-markiertem Kohlenstoff durchgeführte Experimente konnte eindeutig gezeigt werden, dass es sich bei den gebildeten Imidazolen und Glyoxalprodukte handelte. Außerdem konnte der in der Literatur beschriebene Bildungsmechanismus erfolgreich weiter¬entwickelt werden. Während der CYPHEX Kampagne in Zypern konnten erstmalig Imidazole in Feldproben nach¬gewiesen werden. Das Hauptprodukt IC zeigte einen tageszeitlichen Verlauf mit höheren Kon¬zentrationen während der Nacht und korrelierte signifikant aber schwach mit der Acidität und Ammoniumionenkonzentration des gefundenen Aerosols.