28 resultados para ATMOSPHERIC AEROSOLS COMPOSITION
Resumo:
Stable isotope composition of atmospheric carbon monoxide: A modelling study.rnrnThis study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ13C, δ18O and Δ17O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC−1 measurement platform.rnrnThe systematically underestimated 13CO/12CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH4) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13C, were found significant when explicitly simulated. The inaccurate surface emissions, likely underestimated over East Asia, are responsible for roughly half of the discrepancies between the simulated and observed 13CO in the northern hemisphere (NH), whereas the remote southern hemisphere (SH) compositions suggest an underestimated fractionation during the oxidation of CO by the hydroxyl radical (OH). A reanalysis of the kinetic isotope effect (KIE) in this reaction contrasts the conventional assumption of a mere pressure dependence, and instead suggests an additional temperature dependence of the 13C KIE, which is driven by changes in the partitioning of the reaction exit channels. This result is yet to be confirmed in the laboratory.rnrnApart from 13CO, for the first time the atmospheric distribution of the oxygen mass-independent fractionation (MIF) in CO, Δ17O, has been consistently simulated on the global scale with EMAC. The applicability of Δ17O(CO) observations to unravelling changes in the tropospheric CH4-CO-OH system has been scrutinised, as well as the implications of the ozone (O3) input to the CO isotope oxygen budget. The Δ17O(CO) is confirmed to be the principal signal for the CO photochemical age, thus providing a measure for the OH chiefly involved in the sink of CO. The highly mass-independently fractionated O3 oxygen is estimated to comprise around 2% of the overall tropospheric CO source, which has implications for the δ18O, but less likely for the Δ17O CO budgets. Finally, additional sensitivity simulations with EMAC corroborate the nearly equal net effects of the present-day CH4 and CO burdens in removing tropospheric OH, as well as the large turnover and stability of the abundance of the latter. The simulated CO isotopologues nonetheless hint at a likely insufficient OH regeneration in the NH high latitudes and the upper troposphere / lower stratosphere (UTLS).rn
Resumo:
Natural and anthropogenic emissions of gaseous and particulate matter affect the chemical composition of the atmosphere, impact visibility, air quality, clouds and climate. Concerning climate, a comprehensive characterization of the emergence, composition and transformation of aerosol particles is relevant as their influence on the radiation budget is still rarely understood. Regarding air quality and therefore human health, the formation of atmospheric aerosol particles is of particular importance as freshly formed, small particles penetrate into the human alveolar region and can deposit. Additionally, due to the long residence times of aerosol particles in the atmosphere it is crucial to examine their chemical and physical characteristics.This cumulative dissertation deals with stationary measurements of particles, trace gases and meteorological parameters during the DOMINO (Diel Oxidant Mechanism In relation to Nitrogen Oxide) campaign at the southwest coast of Spain in November/December 2008 and the ship emission campaign on the banks of the Elbe in Freiburg/Elbe in April 2011. Measurements were performed using the Mobile research Laboratory “MoLa” which is equipped with state-of-the-art aerosol particle and trace gas instruments as well as a meteorological station.
Resumo:
Inspired by the need for a representation of the biomass burning emissions injection height in the ECHAM/MESSy Atmospheric Chemistry model (EMAC)
Resumo:
Addressing current limitations of state-of-the-art instrumentation in aerosol research, the aim of this work was to explore and assess the applicability of a novel soft ionization technique, namely flowing atmospheric-pressure afterglow (FAPA), for the mass spectrometric analysis of airborne particulate organic matter. Among other soft ionization methods, the FAPA ionization technique was developed in the last decade during the advent of ambient desorption/ionization mass spectrometry (ADI–MS). Based on a helium glow discharge plasma at atmospheric-pressure, excited helium species and primary reagent ions are generated which exit the discharge region through a capillary electrode, forming the so-called afterglow region where desorption and ionization of the analytes occurs. Commonly, fragmentation of the analytes during ionization is reported to occur only to a minimum extent, predominantly resulting in the formation of quasimolecular ions, i.e. [M+H]+ and [M–H]– in the positive and the negative ion mode, respectively. Thus, identification and detection of signals and their corresponding compounds is facilitated in the acquired mass spectra. The focus of the first part of this study lies on the application, characterization and assessment of FAPA–MS in the offline mode, i.e. desorption and ionization of the analytes from surfaces. Experiments in both positive and negative ion mode revealed ionization patterns for a variety of compound classes comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides, and alkaloids. Besides the always emphasized detection of quasimolecular ions, a broad range of signals for adducts and losses was found. Additionally, the capabilities and limitations of the technique were studied in three proof-of-principle applications. In general, the method showed to be best suited for polar analytes with high volatilities and low molecular weights, ideally containing nitrogen- and/or oxygen functionalities. However, for compounds with low vapor pressures, containing long carbon chains and/or high molecular weights, desorption and ionization is in direct competition with oxidation of the analytes, leading to the formation of adducts and oxidation products which impede a clear signal assignment in the acquired mass spectra. Nonetheless, FAPA–MS showed to be capable of detecting and identifying common limonene oxidation products in secondary OA (SOA) particles on a filter sample and, thus, is considered a suitable method for offline analysis of OA particles. In the second as well as the subsequent parts, FAPA–MS was applied online, i.e. for real time analysis of OA particles suspended in air. Therefore, the acronym AeroFAPA–MS (i.e. Aerosol FAPA–MS) was chosen to refer to this method. After optimization and characterization, the method was used to measure a range of model compounds and to evaluate typical ionization patterns in the positive and the negative ion mode. In addition, results from laboratory studies as well as from a field campaign in Central Europe (F–BEACh 2014) are presented and discussed. During the F–BEACh campaign AeroFAPA–MS was used in combination with complementary MS techniques, giving a comprehensive characterization of the sampled OA particles. For example, several common SOA marker compounds were identified in real time by MSn experiments, indicating that photochemically aged SOA particles were present during the campaign period. Moreover, AeroFAPA–MS was capable of detecting highly oxidized sulfur-containing compounds in the particle phase, presenting the first real-time measurements of this compound class. Further comparisons with data from other aerosol and gas-phase measurements suggest that both particulate sulfate as well as highly oxidized peroxyradicals in the gas phase might play a role during formation of these species. Besides applying AeroFAPA–MS for the analysis of aerosol particles, desorption processes of particles in the afterglow region were investigated in order to gain a more detailed understanding of the method. While during the previous measurements aerosol particles were pre-evaporated prior to AeroFAPA–MS analysis, in this part no external heat source was applied. Particle size distribution measurements before and after the AeroFAPA source revealed that only an interfacial layer of OA particles is desorbed and, thus, chemically characterized. For particles with initial diameters of 112 nm, desorption radii of 2.5–36.6 nm were found at discharge currents of 15–55 mA from these measurements. In addition, the method was applied for the analysis of laboratory-generated core-shell particles in a proof-of-principle study. As expected, predominantly compounds residing in the shell of the particles were desorbed and ionized with increasing probing depths, suggesting that AeroFAPA–MS might represent a promising technique for depth profiling of OA particles in future studies.
Resumo:
ZusammenfassungDie Analyse von Isotopenverhältnissen ist von wachsender Bedeutung bei der Untersuchung von Quellen, Senken und chemischen Reaktionswegen atmosphärischer Spurengase. Distickstoffoxid (N2O) hat vier isotopisch einfach substituierte Spezies: 14N15N16O, 15N14N16O, 14N217O und 14N218O. In der vorliegenden Arbeit wurden massenspektrometrische Methoden entwickelt, die eine komplette Charakterisierung der Variationen im Vorkommen dieser Spezies ermöglichen. Es wird die bisher umfassendste Darstellung dieser Variationen in Troposphäre und Stratosphäre gegeben und mit Bezug auf eine Reihe von Laborexperimenten detailliert interpretiert.Die Laborexperimente machen einen großen Anteil dieser Doktorarbeit aus und konzentrieren sich auf die Isotopenfraktionierung in den stratosphärischen N2O-Senken, d. h. Photolyse und Reaktion mit elektronisch angeregten Sauerstoffatomen, O(1D). Diese Prozesse sind von dominantem Einfluß auf die Isotopenzusammensetzung von atmosphärischem N2O. Potentiell wichtige Parameter wie Temperatur- und Druckvariationen, aber auch Veränderungen der Wellenlänge im Fall der Photolyse wurden berücksichtigt. Photolyse bei stratosphärisch relevanten Wellenlängen > 190 nm zeigte immer Anreicherungen von 15N in beiden Stickstoffatomen des verbleibenden N2O wie auch in 17O und 18O. Die Anreicherungen waren am mittelständigen N-Atom signifikant höher als am endständigen N (mit mittleren Werten für 18O) und stiegen zu größeren Wellenlängen und niedrigeren Temperaturen hin an. Erstmalig wurden für 18O und 15N am endständigen N-Atom Isotopenabreicherungen bei 185 nm-Photolyse festgestellt. Im Gegensatz zur Photolyse waren die Isotopenanreicherungen bei der zweiten wichtigen N2O-Senke, Reaktion mit O(1D) vergleichsweise gering. Jedoch war das positionsabhängige Fraktionierungsmuster dem der Photolyse direkt entgegengesetzt und zeigte größere Anreicherungen am endständigen N-Atom. Demgemäß führen beiden Senkenprozesse zu charakteristischen Isotopensignaturen in stratosphärischem N2O. Weitere N2O-Photolyseexperimente zeigten, daß 15N216O in der Atmosphäre höchstwahrscheinlich mit der statistisch zu erwartenden Häufigkeit vorkommt.Kleine stratosphärische Proben erforderten die Anpassung der massenspektrometrischen Methoden an Permanentflußtechniken, die auch für Messungen an Firnluftproben von zwei antarktischen Stationen verwendet wurden. Das 'Firnluftarchiv' erlaubte es, den gegenwärtigen Trend und die präindustriellen Werte der troposphärischen N2O-Isotopensignatur zu bestimmen. Ein daraus konstruiertes globales N2O-Isotopenbudget ist im Einklang mit den besten Schätzungen der Gesamt-N2O-Emissionen aus Böden und Ozeanen.17O-Messungen bestätigten die Sauerstoffisotopenanomalie in atmosphärischem N2O, zeigten aber auch, daß N2O-Photolyse die Sauerstoffisotope gemäß einem massenabhängigen Fraktionierungsgesetz anreichert. Eine troposphärische Ursache für einen Teil des Exzeß-17O wurde vorgeschlagen, basierend auf der Reaktion von NH2 mit NO2, wodurch die Sauerstoffisotopenanomalie von O3 über NO2 an N2O übertragen wird.
Resumo:
Global observations of the chemical composition of the atmosphere are essential for understanding and studying the present and future state of the earth's atmosphere. However, by analyzing field experiments the consideration of the atmospheric motion is indispensable, because transport enables different chemical species, with different local natural and anthropogenic sources, to interact chemically and so consequently influences the chemical composition of the atmosphere. The distance over which that transport occurs is highly dependent upon meteorological conditions (e.g., wind speed, precipitation) and the properties of chemical species itself (e.g., solubility, reactivity). This interaction between chemistry and dynamics makes the study of atmospheric chemistry both difficult and challenging, and also demonstrates the relevance of including the atmospheric motions in that context. In this doctoral thesis the large-scale transport of air over the eastern Mediterranean region during summer 2001, with a focus on August during the Mediterranean Intensive Oxidant Study (MINOS) measurement campaign, was investigated from a lagrangian perspective. Analysis of back trajectories demonstrated transport of polluted air masses from western and eastern Europe in the boundary layer, from the North Atlantic/North American area in the middle end upper troposphere and additionally from South Asia in the upper troposphere towards the eastern Mediterranean. Investigation of air mass transport near the tropopause indicated enhanced cross-tropopause transport relative to the surrounding area over the eastern Mediterranean region in summer. A large band of air mass transport across the dynamical tropopause develops in June, and is shifted toward higher latitudes in July and August. This shifting is associated with the development and the intensification of the Arabian and South Asian upper-level anticyclones and consequential with areas of maximum clear-air turbulence, hypothesizing quasi-permanent areas with turbulent mixing of tropospheric and stratospheric air during summer over the eastern Mediterranean as a result of large-scale synoptic circulation. In context with the latex knowledge about the transport of polluted air masses towards the Mediterranean and with increasing emissions, especially in developing countries like India, this likely gains in importance.
Resumo:
Das Aerosolmassenspektrometer SPLAT (Single Particle Laser Ablation Time-of-Flight Mass Spectrometer) ist in der Lage, die Größe einzelner Aerosolpartikel in einem Größenbereich von 0,3 µm bis 3 µm zu bestimmen und gleichzeitig chemisch zu analysieren. Die Größenbestimmung erfolgt durch Streulichtmessung und Bestimmung der Flugzeit der Partikel zwischen zwei kontinuierlichen Laserstrahlen. Durch Kalibrationsmessungen kann auf den aerodynamischen Durchmesser der Partikel geschlossen werden. Kurzzeitig nach der Streulichtdetektion werden die Partikel durch einen hochenergetischen gepulsten UV-Laser verdampft und ionisiert. Die Flugzeit der Partikel zwischen den kontinuierlichen Laserstrahlen wird dazu benutzt, die Ankunftszeit der Partikel in der Ionenquelle zu berechnen und den UV-Laserpuls zu zünden. Die entstandenen Ionen werden in einem bipolaren Flugzeitmassen¬spektrometer nachgewiesen. Durch die Laserablation/Ionisation ist das SPLAT in der Lage, auch schwer verdampfbare Komponenten des atmosphärischen Aerosols - wie etwa Minerale oder Metalle - nachzuweisen. Das SPLAT wurde während dieser Arbeit vollständig neu entwickelt und aufgebaut. Dazu gehörten das Vakuum- und Einlasssystem, die Partikeldetektion, die Ionenquelle und das Massen-spektrometer. Beim Design des SPLAT wurde vor allem auf den späteren Feldeinsatz Wert gelegt, was besondere Anforderungen an Mechanik und Elektronik stellte. Die Charakterisierung der einzelnen Komponenten sowie des gesamten Instruments wurde unter Laborbedingungen durchgeführt. Dabei wurde u.a. Detektionseffizienzen des Instruments ermittelt, die abhängig von der Größe der Partikel sind. Bei sphärischen Partikeln mit einem Durchmesser von 600 nm wurden ca. 2 % der Partikel die in das Instrument gelangten, detektiert und chemisch analysiert. Die Fähigkeit zum Feldeinsatz hat das SPLAT im Februar/März 2006 während einer internationalen Messkampagne auf dem Jungfraujoch in der Schweiz bewiesen. Auf dieser hochalpinen Forschungsstation in einer Höhe von ca. 3580 m fand das SPLAT mineralische und metallische Komponenten in den Aerosolpartikeln. Das SPLAT ist ein vielfältig einsetzbares Instrument und erlaubt vor allem in Kombination mit Aerosolmassenspektrometern, die mit thermischer Verdampfung und Elektronenstoßionisation arbeiten, einen Erkenntnisgewinn in der Analytik atmosphärischer Aerosolpartikel.
Resumo:
The land-atmosphere exchange of atmospheric trace gases is sensitive to meteorological conditions and climate change. It contributes in turn to the atmospheric radiative forcing through its effects on tropospheric chemistry. The interactions between the hydrological cycle and atmospheric processes are intricate and often involve different levels of feedbacks. The Earth system model EMAC is used in this thesis to assess the direct role of the land surface components of the terrestrial hydrological cycle in the emissions, deposition and transport of key trace gases that control tropospheric chemistry. It is also used to examine its indirect role in changing the tropospheric chemical composition through the feedbacks between the atmospheric and the terrestrial branches of the hydrological cycle. Selected features of the hydrological cycle in EMAC are evaluated using observations from different data sources. The interactions between precipitation and the water vapor column, from the atmospheric branch of the hydrological cycle, and evapotranspiration, from its terrestrial branch, are assessed specially for tropical regions. The impacts of changes in the land surface hydrology on surface exchanges and the oxidizing chemistry of the atmosphere are assessed through two sensitivity simulations. In the first, a new parametrization for rainfall interception in the densely vegetated areas in the tropics is implemented, and its effects are assessed. The second study involves the application of a soil moisture forcing that replaces the model calculated soil moisture. Both experiments have a large impact on the local hydrological cycle, dry deposition of soluble and insoluble gases, emissions of isoprene through changes in surface temperature and the Planetary Boundary Layer height. Additionally the soil moisture forcing causes changes in local vertical transport and large-scale circulation. The changes in trace gas exchanges affect the oxidation capacity of the atmosphere through changes in OH, O$_3$, NO$_x$ concentrations.
Resumo:
Die Vegetation ist die wichtigste Quelle von organischen flüchtigen Verbindungen (auf Englisch volatile organic compounds,VOCs), die einen bemerkenswerten Einfluss auf der Chemie und Physik der Atmosphäre haben. VOCs beeinflussen die oxidative Kapazität der Atmosphäre und tragen zu der Bildung und zum Wachstum von sekundären organischen Aerosolen bei, welche einerseits eine Streuung und Reflektierung der Energie verursachen und andererseits sich an der Bildung und Entwicklung von Wolken beteiligen. Ziel dieser Arbeit war die Beschreibung und der Vergleich von VOC Emissionen aus Pflanzen aus zwei verschiedenen Ökosystemen: Mediterranes Ökosystem und Tropisches Ökosystem. Für diese Aufgabe wurden gewöhnliche Pflanzen von beiden Ökosystemen untersucht. Siebzehn Pflanzenspezies aus der Mittelmeergebiet, welches bekannt ist für seine Vielfalt an VOC emittierenden Pflanzen, wurden in die Untersuchungen einbezogen. Im Gegensatz zum mediterranen Ökosystem sind nur wenig Information verfügbar über VOC Emissionen aus Blättern tropischer Baumspezies. Vor diesem Hintergrund wurden sechsundzwanzig Baumspezies aus verschiedenen Ökotypen des Amazonasbeckens (Terra firme, Várzea und Igapó) wurden auf VOC Emissionen auf Blattebene mit einem Küvetten-System untersucht. Analysen von flüchtigen organischen Verbindungen wurden online mit PTR-MS und offline mittels Sammlung auf entsprechenden Adsorbern (Kartuschen) und nachfolgender GC-FID Analyse untersucht. Die höchsten Emissionen wurden für Isoprene beobachtete, gefolgt durch Monoterpene, Methanol und Aceton. Die meisten Mittelmeer Spezies emittierten eine hohe Vielfalt an Monoterpenspezies, hingegen zeigten nur fünf tropische Pflanzenspezies eine Monoterpene mit einen sehr konservativen Emissionsprofil (α-Pinen>Limonen>Sabinen >ß-Pinen). Mittelmeerpflanzen zeigten zusätzlich Emissionen von Sesquiterpenen, während bei der Pflanzen des Amazonas Beckens keine Sesquiterpenemissionen gefunden wurden. Dieser letzte Befund könnte aber auch durch eine niedrigere Sensitivität des Messsystems während der Arbeiten im Amazonasgebiet erklärt werden. Zusätzlich zu den Isoprenoidemissionen waren Methanolemissionen als Indikator für Wachtumsvorgänge sehr verbreitet in den meisten Pflanzenspezies aus tropischen und mediterranen Gebieten. Einige Pflanzenspezies beider Ökosystemen zeigten Acetonemissionen. rnrnVOC Emissionen werde durch eine große Vielfalt an biotischen und abiotischen Faktoren wie Lichtintensität, Temperatur, CO2 und Trockenheit beeinflusst. Ein anderer, öfter übersehener Faktor, der aber sehr wichtig ist für das Amazonas Becken, ist die regelmäßige Überflutung. In dieser Untersuchung wir fanden heraus, dass am Anfang einer Wurzelanoxie, die durch die Überflutung verursacht wurde, Ethanol und Acetaldehyd emittiert werden können, vor allem in Pflanzenspezies, die schlechter an eine unzureichende Sauerstoffversorgung bei Flutung adaptiert sind, wie z.B. Vatairea guianensis. Die Spezies Hevea spruceana, welche besser an Überflutung adaptiert ist, könnte möglicherweise der gebildete Ethanol sofort remetabolisieren ohne es zu emittieren. Nach einer langen Periode einer Überflutung konnte allerdings keine Emission mehr beobachtet werden, was auf eine vollständige Adaptation mit zunehmender Dauer schließen lässt. Als Reaktion auf den ausgelösten Stress können Isoprenoidemissionen ebenfalls kurzfristig nach einigen Tage an Überflutung zunehmen, fallen dann aber dann nach einer langen Periode zusammen mit der Photosynthese, Transpiration und stomatäre Leitfähigkeit deutlich ab.rnrnPflanzen Ontogenese ist anscheinend von Bedeutung für die Qualität und Quantität von VOC Emissionen. Aus diesem Grund wurden junge und erwachsene Blätter einiger gut charakterisierten Pflanzen Spezies aus dem Mittelmeerraum auf VOC Emissionen untersucht. Standard Emissionsfaktoren von Isopren waren niedriger in jungen Blättern als in erwachsene Blätter. Hingegen wurden höhere Monoterpen- und Sesquiterpenemissionen in jungen Blätter einiger Pflanzenspezies gefunden. Dieser Befund deutet auf eine potentielle Rolle dieser VOCs als Abwehrkomponenten gegen Pflanzenfresser oder Pathogene bei jungen Blätter hin. In einigen Fällen variierte auch die Zusammensetzung der Monoterpen- und Sesquiterpenspezies bei jungen und erwachsenen Blättern. Methanolemissionen waren, wie erwartet, höher in jungen Blättern als in ausgewachsenen Blättern, was mit der Demethylierung von Pectin bei der Zellwandreifung erklärt werden kann. Diese Befunde zu Änderungen der Emissionskapazität der Vegetation können für zukünftige Modellierungen herangezogen werden. rn
Resumo:
In der marinen Grenzschicht beeinflussen reaktive Iodspezies wie z.B. I2 sowie aliphatische Amine eine Vielzahl atmosphärischer Prozesse, vor allem bei der Partikelneubildung spielen sie eine entscheidende Rolle. Allerdings stellt die Quantifizierung dieser Verbindungen im Spurenbereich immer noch eine große analytische Herausforderung dar. rnAus diesem Grund wurde im Rahmen der vorliegenden Arbeit das GTRAP-AMS (Gaseous compound trapping in artificially generated particles – aerosol mass spectrometry) entwickelt, um gasförmiges I2 und aliphatische Amine zu bestimmen. Hierbei wird ein Flugzeit-Aerosolmassenspektrometer (ToF-AMS), das ursprünglich für die on-line Charakterisierung von Aerosolen entwickelt wurde, mit einer GTRAP-Einheit gekoppelt. Im Fall von I2 werden mit Hilfe eines pneumatischen Zerstäubers a-Cyclodextrin/NH4Br-Partikel erzeugt, die mit dem gasförmigen I2 innerhalb der GTRAP-Einheit eine Einschlussverbindung bilden und dieses dadurch selektiv in die Partikelphase aufnehmen. Für die on-line Bestimmung gasförmiger aliphatischer Amine dagegen wurde Phosphorsäure als partikulärer Reaktionspartner eingesetzt. Nach Optimierung des GTRAP-AMS Systems wurde sowohl für I2 als auch für die aliphatischen Amine eine Nachweisgrenze im sub-ppb-Bereich für eine Zeitauflösung zwischen 1 und 30 min erhalten. Als erstes wurde das GTRAP-AMS System zur Charakterisierung von Permanentdenudern eingesetzt, um deren I2-Aufnahmefähigkeit und Wiederverwendbarkeit im Vergleich zu den herkömmlichen einmal verwendbaren a-Cyclodextrin Denudern zu testen.rnIm Anschluss daran wurde das GTRAP-AMS für die Bestimmung zeitlich aufgelöster I2- Emissionsraten ausgewählter Makroalgen unter dem Einfluss von Ozon eingesetzt. Die Kenntnis der Emissionsraten iodhaltiger Verbindungen der wichtigsten weltweit vorkommenden Makroalgen ist für die Modellierung der Iodchemie in der marinen Grenzschicht von besonderer Bedeutung. Die Resultate zeigen, dass verschiedene Makroalgen sowohl unterschiedliche zeitlich aufgelöste I2-Emissionsprofile als auch Gesamtemissionsraten liefern. Im Vergleich zu den iodorganischen Verbindungen ist die Gesamtemissionsrate an I2 allerdings eine bis zwei Größenordnungen größer. Dies und die deutlich kürzere atmosphärische Lebensdauer von I2 im Vergleich zu den iodorganischen Verbindungen führen dazu, dass I2 die dominierende iodhaltige Verbindung für die Bildung reaktiver Iodatome in der marinen Grenzschicht ist. rnDa über dem tropischen Atlantischen Ozean bislang jedoch nur ein geringer Anteil der IO-Konzentration durch die Oxidation von iodorganischen Verbindungen erklärt werden kann, wurden weitere Quellen für I2 erforscht. Deshalb wurden Kammerexperimente mit Mikrolagen durchgeführt, um deren Einfluss auf die I2-Freisetzung in die Atmosphäre zu untersuchen. Hierbei konnte gezeigt werden, dass die Anwesenheit von Mikroalgen (z.B. Coscinodiscus Wailesii) im Meerwasser zu einer erhöhten Freisetzung von I2 aus dem Meerwasser in die Atmosphäre führen kann. rnDes Weiteren wurden auch Versuche zu abiotischen Bildungswegen von I2 durchgeführt. Die Ergebnisse der Atmosphärensimulationsexperimente haben gezeigt, dass partikuläre Iodoxide durch organische Verbindungen zu I2 reduziert werden können, welches im Anschluss von der Partikelphase in die Gasphase übergehen kann und dort wieder für Gasphasenprozesse zur Verfügung steht.rn
Resumo:
Atmosphärische Aerosolpartikel wirken in vielerlei Hinsicht auf die Menschen und die Umwelt ein. Eine genaue Charakterisierung der Partikel hilft deren Wirken zu verstehen und dessen Folgen einzuschätzen. Partikel können hinsichtlich ihrer Größe, ihrer Form und ihrer chemischen Zusammensetzung charakterisiert werden. Mit der Laserablationsmassenspektrometrie ist es möglich die Größe und die chemische Zusammensetzung einzelner Aerosolpartikel zu bestimmen. Im Rahmen dieser Arbeit wurde das SPLAT (Single Particle Laser Ablation Time-of-flight mass spectrometer) zur besseren Analyse insbesondere von atmosphärischen Aerosolpartikeln weiterentwickelt. Der Aerosoleinlass wurde dahingehend optimiert, einen möglichst weiten Partikelgrößenbereich (80 nm - 3 µm) in das SPLAT zu transferieren und zu einem feinen Strahl zu bündeln. Eine neue Beschreibung für die Beziehung der Partikelgröße zu ihrer Geschwindigkeit im Vakuum wurde gefunden. Die Justage des Einlasses wurde mithilfe von Schrittmotoren automatisiert. Die optische Detektion der Partikel wurde so verbessert, dass Partikel mit einer Größe < 100 nm erfasst werden können. Aufbauend auf der optischen Detektion und der automatischen Verkippung des Einlasses wurde eine neue Methode zur Charakterisierung des Partikelstrahls entwickelt. Die Steuerelektronik des SPLAT wurde verbessert, so dass die maximale Analysefrequenz nur durch den Ablationslaser begrenzt wird, der höchsten mit etwa 10 Hz ablatieren kann. Durch eine Optimierung des Vakuumsystems wurde der Ionenverlust im Massenspektrometer um den Faktor 4 verringert.rnrnNeben den hardwareseitigen Weiterentwicklungen des SPLAT bestand ein Großteil dieser Arbeit in der Konzipierung und Implementierung einer Softwarelösung zur Analyse der mit dem SPLAT gewonnenen Rohdaten. CRISP (Concise Retrieval of Information from Single Particles) ist ein auf IGOR PRO (Wavemetrics, USA) aufbauendes Softwarepaket, das die effiziente Auswertung der Einzelpartikel Rohdaten erlaubt. CRISP enthält einen neu entwickelten Algorithmus zur automatischen Massenkalibration jedes einzelnen Massenspektrums, inklusive der Unterdrückung von Rauschen und von Problemen mit Signalen die ein intensives Tailing aufweisen. CRISP stellt Methoden zur automatischen Klassifizierung der Partikel zur Verfügung. Implementiert sind k-means, fuzzy-c-means und eine Form der hierarchischen Einteilung auf Basis eines minimal aufspannenden Baumes. CRISP bietet die Möglichkeit die Daten vorzubehandeln, damit die automatische Einteilung der Partikel schneller abläuft und die Ergebnisse eine höhere Qualität aufweisen. Daneben kann CRISP auf einfache Art und Weise Partikel anhand vorgebener Kriterien sortieren. Die CRISP zugrundeliegende Daten- und Infrastruktur wurde in Hinblick auf Wartung und Erweiterbarkeit erstellt. rnrnIm Rahmen der Arbeit wurde das SPLAT in mehreren Kampagnen erfolgreich eingesetzt und die Fähigkeiten von CRISP konnten anhand der gewonnen Datensätze gezeigt werden.rnrnDas SPLAT ist nun in der Lage effizient im Feldeinsatz zur Charakterisierung des atmosphärischen Aerosols betrieben zu werden, während CRISP eine schnelle und gezielte Auswertung der Daten ermöglicht.
Resumo:
This study aims at a comprehensive understanding of the effects of aerosol-cloud interactions and their effects on cloud properties and climate using the chemistry-climate model EMAC. In this study, CCN activation is regarded as the dominant driver in aerosol-cloud feedback loops in warm clouds. The CCN activation is calculated prognostically using two different cloud droplet nucleation parameterizations, the STN and HYB CDN schemes. Both CDN schemes account for size and chemistry effects on the droplet formation based on the same aerosol properties. The calculation of the solute effect (hygroscopicity) is the main difference between the CDN schemes. The kappa-method is for the first time incorporated into Abdul-Razzak and Ghan activation scheme (ARG) to calculate hygroscopicity and critical supersaturation of aerosols (HYB), and the performance of the modied scheme is compared with the osmotic coefficient model (STN), which is the standard in the ARG scheme. Reference simulations (REF) with the prescribed cloud droplet number concentration have also been carried out in order to understand the effects of aerosol-cloud feedbacks. In addition, since the calculated cloud coverage is an important determinant of cloud radiative effects and is influencing the nucleation process two cloud cover parameterizations (i.e., a relative humidity threshold; RH-CLC and a statistical cloud cover scheme; ST-CLC) have been examined together with the CDN schemes, and their effects on the simulated cloud properties and relevant climate parameters have been investigated. The distinct cloud droplet spectra show strong sensitivity to aerosol composition effects on cloud droplet formation in all particle sizes, especially for the Aitken mode. As Aitken particles are the major component of the total aerosol number concentration and CCN, and are most sensitive to aerosol chemical composition effect (solute effect) on droplet formation, the activation of Aitken particles strongly contribute to total cloud droplet formation and thereby providing different cloud droplet spectra. These different spectra influence cloud structure, cloud properties, and climate, and show regionally varying sensitivity to meteorological and geographical condition as well as the spatiotemporal aerosol properties (i.e., particle size, number, and composition). The changes responding to different CDN schemes are more pronounced at lower altitudes than higher altitudes. Among regions, the subarctic regions show the strongest changes, as the lower surface temperature amplifies the effects of the activated aerosols; in contrast, the Sahara desert, where is an extremely dry area, is less influenced by changes in CCN number concentration. The aerosol-cloud coupling effects have been examined by comparing the prognostic CDN simulations (STN, HYB) with the reference simulation (REF). Most pronounced effects are found in the cloud droplet number concentration, cloud water distribution, and cloud radiative effect. The aerosol-cloud coupling generally increases cloud droplet number concentration; this decreases the efficiency of the formation of weak stratiform precipitation, and increases the cloud water loading. These large-scale changes lead to larger cloud cover and longer cloud lifetime, and contribute to high optical thickness and strong cloud cooling effects. This cools the Earth's surface, increases atmospheric stability, and reduces convective activity. These changes corresponding to aerosol-cloud feedbacks are also differently simulated depending on the cloud cover scheme. The ST-CLC scheme is more sensitive to aerosol-cloud coupling, since this scheme uses a tighter linkage of local dynamics and cloud water distributions in cloud formation process than the RH-CLC scheme. For the calculated total cloud cover, the RH-CLC scheme simulates relatively similar pattern to observations than the ST-CLC scheme does, but the overall properties (e.g., total cloud cover, cloud water content) in the RH simulations are overestimated, particularly over ocean. This is mainly originated from the difference in simulated skewness in each scheme: the RH simulations calculate negatively skewed distributions of cloud cover and relevant cloud water, which is similar to that of the observations, while the ST simulations yield positively skewed distributions resulting in lower mean values than the RH-CLC scheme does. The underestimation of total cloud cover over ocean, particularly over the intertropical convergence zone (ITCZ) relates to systematic defficiency of the prognostic calculation of skewness in the current set-ups of the ST-CLC scheme.rnOverall, the current EMAC model set-ups perform better over continents for all combinations of the cloud droplet nucleation and cloud cover schemes. To consider aerosol-cloud feedbacks, the HYB scheme is a better method for predicting cloud and climate parameters for both cloud cover schemes than the STN scheme. The RH-CLC scheme offers a better simulation of total cloud cover and the relevant parameters with the HYB scheme and single-moment microphysics (REF) than the ST-CLC does, but is not very sensitive to aerosol-cloud interactions.
Resumo:
Die Gesundheitseffekte von Aerosolpartikeln werden stark von ihren chemischen und physikalischen Eigenschaften und somit den jeweiligen Bildungsprozessen und Quellencharakteristika beeinflusst. Während die Hauptquellen der anthropogenen Partikelemissionen gut untersucht sind, stellen die spezifischen Emissionsmuster zahlreicher kleiner Aerosolquellen, welche lokal und temporär zu einer signifikanten Verschlechterung der Luftqualität beitragen können, ein Forschungsdesiderat dar.rnIn der vorliegenden Arbeit werden in kombinierten Labor- und Feldmessungen durch ein integratives Analysekonzept mittels online (HR-ToF-AMS ) und filterbasierter offline (ATR-FTIR-Spektroskopie ) Messverfahren die weitgehend unbekannten physikalischen und chemischen Eigenschaften der Emissionen besonderer anthropogener Aerosolquellen untersucht. Neben einem Fußballstadion als komplexe Mischung verschiedener Aerosolquellen wie Frittieren und Grillen, Zigarettenrauchen und Pyrotechnik werden die Emissionen durch Feuerwerkskörper, landwirtschaftliche Intensivtierhaltung (Legehennen), Tief- und Straßenbauarbeiten sowie abwasserbürtige Aerosolpartikel in die Studie mit eingebunden. Die primären Partikelemissionen der untersuchten Quellen sind vorrangig durch kleine Partikelgrößen (dp < 1 µm) und somit eine hohe Lungengängigkeit gekennzeichnet. Dagegen zeigen die Aerosolpartikel im Stall der landwirtschaftlichen Intensivtierhaltung sowie die Emissionen durch die Tiefbauarbeiten einen hohen Masseanteil von Partikeln dp > 1 µm. Der Fokus der Untersuchung liegt auf der chemischen Charakterisierung der organischen Partikelbestandteile, welche für viele Quellen die NR-PM1-Emissionen dominieren. Dabei zeigen sich wichtige quellenspezifische Unterschiede in der Zusammensetzung der organischen Aerosolfraktion. Die beim Abbrand von pyrotechnischen Gegenständen freigesetzten sowie die abwasserbürtigen Aerosolpartikel enthalten dagegen hohe relative Gehalte anorganischer Substanzen. Auch können in einigen spezifischen Emissionen Metallverbindungen in den AMS-Massenspektren nachgewiesen werden. Über die Charakterisierung der Emissionsmuster und -dynamiken hinaus werden für einige verschiedenfarbige Rauchpatronen sowie die Emissionen im Stall der Intensivtierhaltung Emissionsfaktoren bestimmt, die zur quantitativen Bilanzierung herangezogen werden können. In einem weiteren Schritt werden anhand der empirischen Daten die analytischen Limitierungen der Aerosolmassenspektrometrie wie die Interferenz organischer Fragmentionen durch (Hydrogen-)Carbonate und mögliche Auswertestrategien zur Überwindung dieser Grenzen vorgestellt und diskutiert.rnEine umfangreiche Methodenentwicklung zur Verbesserung der analytischen Aussagekraft von organischen AMS-Massenspektren zeigt, dass für bestimmte Partikeltypen einzelne Fragmentionen in den AMS-Massenspektren signifikant mit ausgewählten funktionellen Molekülgruppen der FTIR-Absorptionsspektren korrelieren. Bedingt durch ihre fehlende Spezifität ist eine allgemeingültige Interpretation von AMS-Fragmentionen als Marker für verschiedene funktionelle Gruppen nicht zulässig und häufig nur durch die Ergebnisse der komplementären FTIR-Spektroskopie möglich. Des Weiteren wurde die Verdampfung und Ionisation ausgewählter Metallverbindungen im AMS analysiert. Die Arbeit verdeutlicht, dass eine qualitative und quantitative Auswertung dieser Substanzen nicht ohne Weiteres möglich ist. Die Gründe hierfür liegen in einer fehlenden Reproduzierbarkeit des Verdampfungs- und Ionisationsprozesses aufgrund von Matrixeffekten sowie der in Abhängigkeit vorangegangener Analysen (Verdampferhistorie) in der Ionisationskammer und auf dem Verdampfer statt-findenden chemischen Reaktionen.rnDie Erkenntnisse der Arbeit erlauben eine Priorisierung der untersuchten anthropogenen Quellen nach bestimmten Messparametern und stellen für deren Partikelemissionen den Ausgangpunkt einer Risikobewertung von atmosphärischen Folgeprozessen sowie potentiell negativen Auswirkungen auf die menschliche Gesundheit dar. rn