95 resultados para Ondas elasticas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Usando o formalismo relativístico no estudo da propagação de perturbações lineares em fluidos ideais, obtêm-se fortes analogias com os resultados encontrados na Teoria da Relatividade Geral. Neste contexto, de acordo com Unruh [W. Unruh, Phys. Rev. Letters 46, 1351 (1981)], é possível simular um espaço-tempo dotado de uma métrica efetiva em um fluído ideal barotrópico, irrotacional e perturbado por ondas acústicas. Esse espaço-tempo efetivo é chamado de espaço-tempo acústico e satisfaz as propriedades geométricas e cinemáticas de um espaço-tempo curvo. Neste trabalho estudamos os modos quasinormais (QNs) e os pólos de Regge (PRs) para um espaço-tempo acústico conhecido como buraco acústico canônico (BAC). No nosso estudo, usamos o método de expansão assintótica proposto por Dolan e Ottewill [S. R. Dolan e A. C. Ottewill, Class. Quantum Gravity 26, 225003 (2009)] para calcularmos, em termos arbitrários do número de overtone n, as frequências QNs e os momentos angulares para os PRs, bem como suas respectivas funções de onda. As frequências e as funções de onda dos modos QNs são expandidas em termos de potências inversas de L = l + 1/2 , onde l é o momento angular, enquanto que os momentos angulares e funções de onda dos PRs são expandidos em termos do inverso das frequências de oscilação do buraco acústico canônico. Comparamos os nossos resultados com os já existentes na literatura, que usam a aproximação de Wentzel-Kramers-Brillouin (WKB) como método de determinação dos modos QNs e dos PRs, e obtemos uma excelente concordância dentro do limite da aproximação eikonal (l ≥ 2 e l > n).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Em investigações geofísicas rasas que empregam os métodos eletromagnéticos indutivos mais avançados, alvos com baixo número de indução (Low Induction Number – LIN) produzem anomalias eletromagnéticas muito baixas e de difícil interpretação. Para suprir esta deficiência, neste trabalho são estudados a aplicabilidade de campos eletromagnéticos polarizados e focalizados – POLFOCEM como fonte primária de indução. Os campos E.M. focalizados e polarizados, vertical e horizontalmente, são obtidos pelas combinações vetoriais de pares de dipolos transmissores e, ocorrem na região central entre eles. A focalização é observada nesta região na profundidade de 0,25 do espaçamento entre esses transmissores – L. Portanto, máximos acoplamentos podem ser obtidos através da seleção da polarização de acordo com a geometria do alvo, ocorrendo um aumento na densidade de fluxo magnético sobre ele e, máximas anomalias produzidas. É utilizada uma metodologia numérica para o cômputo dessas anomalias por meio da técnica dos elementos finitos para solução do problema 2,5-D. Em todos os experimentos numéricos são realizadas comparações qualitativas e quantitativas entre as respostas obtidas pelos sistemas POLFOCEM e convencional, o qual emprega um único dipolo como transmissor (dipolo-dipolo). As anomalias produzidas pelo sistema POLFOCEM, em que os dipolos transmissores são acionados simultaneamente, correspondem à soma das anomalias produzidas por cada um desses dipolos independentes, caracterizando, desta forma, a linearidade dos campos eletromagnéticos. Os experimentos numéricos são realizados para alvos prismáticos bidimensionais com três diferentes inclinações, inseridos num semi-espaço resistivo, e para as freqüências das fontes na faixa das ondas de rádio. As anomalias assimétricas no sistema convencional, que se tornam simétricas no sistema POLFOCEM, apresentam valores menores em amplitude. Contudo, aquelas anomalias tanto assimétricas quanto simétricas que se tornam anti-simétricas apresentam valores maiores. Em decorrência dessas diminuições e aumentos nas amplitudes ocorrem rotações nos diagramas de Argand, no sentido horário e anti-horário para alvos com baixos valores de condutividade, respectivamente. Em experimentos de identificação de presença de dois alvos próximos, o sistema convencional é capaz de identificá-los primeiramente, prevalecendo o seu uso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O método de empilhamento sísmico CRS simula seções sísmicas ZO a partir de dados de cobertura múltipla, independente do macro-modelo de velocidades. Para meios 2-D, a função tempo de trânsito de empilhamento depende de três parâmetros, a saber: do ângulo de emergência do raio de reflexão normal (em relação à normal da superfície) e das curvaturas das frentes de onda relacionadas às ondas hipotéticas, denominadas NIP e Normal. O empilhamento CRS consiste na soma das amplitudes dos traços sísmicos em dados de múltipla cobertura, ao longo da superfície definida pela função tempo de trânsito do empilhamento CRS, que melhor se ajusta aos dados. O resultado do empilhamento CRS é assinalado a pontos de uma malha pré-definida na seção ZO. Como resultado tem-se a simulação de uma seção sísmica ZO. Isto significa que para cada ponto da seção ZO deve-se estimar o trio de parâmetros ótimos que produz a máxima coerência entre os eventos de reflexão sísmica. Nesta Tese apresenta-se fórmulas para o método CRS 2-D e para a velocidade NMO, que consideram a topografia da superfície de medição. O algoritmo é baseado na estratégia de otimização dos parâmetros de fórmula CRS através de um processo em três etapas: 1) Busca dos parâmetros, o ângulo de emergência e a curvatura da onda NIP, aplicando uma otimização global, 2) busca de um parâmetro, a curvatura da onda N, aplicando uma otimização global, e 3) busca de três parâmetros aplicando uma otimização local para refinar os parâmetros estimados nas etapas anteriores. Na primeira e segunda etapas é usado o algoritmo Simulated Annealing (SA) e na terceira etapa é usado o algoritmo Variable Metric (VM). Para o caso de uma superfície de medição com variações topográficas suaves, foi considerada a curvatura desta superfície no algoritmo do método de empilhamento CRS 2-D, com aplicação a dados sintéticos. O resultado foi uma seção ZO simulada, de alta qualidade ao ser comparada com a seção ZO obtida por modelamento direto, com uma alta razão sinal-ruído, além da estimativa do trio de parâmetros da função tempo de trânsito. Foi realizada uma nálise de sensibilidade para a nova função de tempo de trânsito CRS em relação à curvatura da superfície de medição. Os resultados demonstraram que a função tempo de trânsito CRS é mais sensível nos pontos-médios afastados do ponto central e para grandes afastamentos. As expressões da velocidade NMO apresentadas foram aplicadas para estimar as velocidades e as profundidades dos refletores para um modelo 2-D com topografia suave. Para a inversão destas velocidades e profundidades dos refletores, foi considerado o algoritmo de inversão tipo Dix. A velocidade NMO para uma superfície de medição curva, permite estimar muito melhor estas velocidades e profundidades dos refletores, que as velocidades NMO referidas as superfícies planas. Também apresenta-se uma abordagem do empilhamento CRS no caso 3-D. neste caso a função tempo de trânsito depende de oito parâmetros. São abordadas cinco estratégias de busca destes parâmetros. A combinação de duas destas estratégias (estratégias das três aproximações dos tempos de trânsito e a estratégia das configurações e curvaturas arbitrárias) foi aplicada exitosamente no empilhamento CRS 3-D de dados sintéticos e reais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O método de empilhamento sísmico por Superfície de Reflexão Comum (ou empilhamento SRC) produz a simulação de seções com afastamento nulo (NA) a partir dos dados de cobertura múltipla. Para meios 2D, o operador de empilhamento SRC depende de três parâmetros que são: o ângulo de emergência do raio central com fonte-receptor nulo (β0), o raio de curvatura da onda ponto de incidência normal (RNIP) e o raio de curvatura da onda normal (RN). O problema crucial para a implementação do método de empilhamento SRC consiste na determinação, a partir dos dados sísmicos, dos três parâmetros ótimos associados a cada ponto de amostragem da seção AN a ser simulada. No presente trabalho foi desenvolvido uma nova sequência de processamento para a simulação de seções AN por meio do método de empilhamento SRC. Neste novo algoritmo, a determinação dos três parâmetros ótimos que definem o operador de empilhamento SRC é realizada em três etapas: na primeira etapa são estimados dois parâmetros (β°0 e R°NIP) por meio de uma busca global bidimensional nos dados de cobertura múltipla. Na segunda etapa é usado o valor de β°0 estimado para determinar-se o terceiro parâmetro (R°N) através de uma busca global unidimensional na seção AN resultante da primeira etapa. Em ambas etapas as buscas globais são realizadas aplicando o método de otimização Simulated Annealing (SA). Na terceira etapa são determinados os três parâmetros finais (β0, RNIP e RN) através uma busca local tridimensional aplicando o método de otimização Variable Metric (VM) nos dados de cobertura múltipla. Nesta última etapa é usado o trio de parâmetros (β°0, R°NIP, R°N) estimado nas duas etapas anteriores como aproximação inicial. Com o propósito de simular corretamente os eventos com mergulhos conflitantes, este novo algoritmo prevê a determinação de dois trios de parâmetros associados a pontos de amostragem da seção AN onde há intersecção de eventos. Em outras palavras, nos pontos da seção AN onde dois eventos sísmicos se cruzam são determinados dois trios de parâmetros SRC, os quais serão usados conjuntamente na simulação dos eventos com mergulhos conflitantes. Para avaliar a precisão e eficiência do novo algoritmo, este foi aplicado em dados sintéticos de dois modelos: um com interfaces contínuas e outro com uma interface descontinua. As seções AN simuladas têm elevada razão sinal-ruído e mostram uma clara definição dos eventos refletidos e difratados. A comparação das seções AN simuladas com as suas similares obtidas por modelamento direto mostra uma correta simulação de reflexões e difrações. Além disso, a comparação dos valores dos três parâmetros otimizados com os seus correspondentes valores exatos calculados por modelamento direto revela também um alto grau de precisão. Usando a aproximação hiperbólica dos tempos de trânsito, porém sob a condição de RNIP = RN, foi desenvolvido um novo algoritmo para a simulação de seções AN contendo predominantemente campos de ondas difratados. De forma similar ao algoritmo de empilhamento SRC, este algoritmo denominado empilhamento por Superfícies de Difração Comum (SDC) também usa os métodos de otimização SA e VM para determinar a dupla de parâmetros ótimos (β0, RNIP) que definem o melhor operador de empilhamento SDC. Na primeira etapa utiliza-se o método de otimização SA para determinar os parâmetros iniciais β°0 e R°NIP usando o operador de empilhamento com grande abertura. Na segunda etapa, usando os valores estimados de β°0 e R°NIP, são melhorados as estimativas do parâmetro RNIP por meio da aplicação do algoritmo VM na seção AN resultante da primeira etapa. Na terceira etapa são determinados os melhores valores de β°0 e R°NIP por meio da aplicação do algoritmo VM nos dados de cobertura múltipla. Vale salientar que a aparente repetição de processos tem como efeito a atenuação progressiva dos eventos refletidos. A aplicação do algoritmo de empilhamento SDC em dados sintéticos contendo campos de ondas refletidos e difratados, produz como resultado principal uma seção AN simulada contendo eventos difratados claramente definidos. Como uma aplicação direta deste resultado na interpretação de dados sísmicos, a migração pós-empilhamento em profundidade da seção AN simulada produz uma seção com a localização correta dos pontos difratores associados às descontinuidades do modelo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A análise de AVO constitui-se, atualmente, numa importante ferramenta para a extração de informações litológicas a partir de dados sísmicos, através do uso dos contrastes de impedância acústica nas interfaces que separam diferentes litologias. A hipótese usual de isotropia deixa de valer, em muitos casos, após o advento de arranjos de grande afastamento e geofones com multi-superfície. Para a interpretação destes dados, a análise de AVO deve incluir anisotropia. Este trabalho apresenta uma teoria de AVO e resultados numéricos para um meio anisotrópico estratificado. Esta tese contém três contribuições. Inicialmente, é apresentada uma nova abordagem para o estudo da reflexão-transmissão através de interface plana que separam dois meios anisotrópicos com pelo menos um plano horizontal de simetria especular. As equações de Zoeppritz são generalizadas para incluir anisotropia, através da introdução das chamadas matrizes de impedância, o que simplifica bastante o formalismo anterior. Posteriormente, é descrito o estudo da reflexão de ondas P através de interface entre um meio isotrópico e outro transversalmente isotrópico (TI). É mostrado que a reflexão de ondas P, neste tipo de experimento, não fornece informações sobre a presença de anisotropia do semi-espaço TI, pelo menos em incidência pré-crítica. Finalmente, é discutido o comportamento da reflexão e transmissão de pulsos, em incidência pós-crítica, através de meios anisotrópicos estratificados. Observa-se que o comportamento pós-crítico dos pulsos espalhados carregam valiosa informações sobre a anisotropia dos meios atravessados por eles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As medidas de amplitude, polarização e vagarosidade contem informações sobre o meio onde a propagação de onda ocorre. Esta tese investiga esses dados com objetivo de estimar as propriedades elásticas deste meio. Coeficientes de reflexão podem ser estimados das amplitudes dos dados e dependem de forma não linear dos contrastes dos parâmetros elásticos e do contraste de densidade entre os meios separados por uma interface. Quando o contraste de impedância é fraco, as aproximações lineares para a refletividade qP são mais convenientes para inversão da densidade e dos parâmetros elásticos usando as análises de amplitude versus ângulo de incidência (AVO) e amplitude versus a direção do plano de incidência (AVD). Escrevendo as equações de Zoepprittz de forma separada nos permite escrever uma solução destas equações em termos das matrizes de impedância e polarização. Usando esta solução são determinadas aproximações lineares para a refletividade da onda qP considerando fraco contraste de impedância, fraca anisotropia mas com classe de simetria de arbitrária. As linearizações são avaliadas para diferentes geometrias de aquisição e várias escolhas do meio de referência. Estas aproximações apresentam bom desempenho comparado com o valor exato do coeficiente de reflexão da onda qP e de suas ondas convertidas para incidências de até 30° e meios que obedecem à hipótese de fraca anisotropia. Um conjunto de fraturas orientado é representado efetivamente por um meio transversalmente isotrópico (TI), as aproximações lineares da refletividade da onda qP podem ser usadas para estimar a orientação de fratura. Partindo deste pressuposto este problema consiste em estimar a orientação do eixo de simetria a partir de dados de refletividade de onda qP. Este trabalho mostra que são necessários múltiplos azimutes e múltiplas incidências para se obter uma estimativa estável. Também é mostrado que apenas os coeficientes das ondas qS e qT são sensíveis ao mergulho da fratura. Foi investigada a estimativa da anisotropia local através de dados de VSP multiazimutal dos vetores de polarização e vagarosidade. Foram usadas medidas da componente vertical do vetor de vagarosidade e o vetor de polarização de ondas qP diretas e refletidas. O esquema de inversão é validado através de exemplos sintéticos considerando diferentes escolhas do vetor normal à frente de onda no meio de referência, meios de referências e geometria de aquisição. Esta análise mostra que somente um subgrupo dos parâmetros elástico pode ser estimado. Uma importante aplicação desta metodologia é o seu potencial para a determinação de classes de anisotropia. A aplicação desta metodologia aos dados do mar de Java mostra que os modelos isotrópicos e TIV são inadequados para o ajuste desses dados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa na solução de problemas de modelagem e imageamento sísmicos. Nesta Tese, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB). As principais características que diferenciam a migração KGB, durante a realização do primeiro empilhamento, de outros métodos de migração que também utilizam a teoria dos Feixes Gaussianos, são o uso da primeira zona de Fresnel projetada para limitar a largura do feixe e a utilização, no empilhamento do feixe, de uma aproximação de segunda ordem do tempo de trânsito de reflexão. Como exemplos são apresentadas aplicações a dados sintéticos para modelos bidimensionais (2-D) e tridimensionais (3-D), correspondentes aos modelos Marmousi e domo de sal da SEG/EAGE, respectivamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho discute dois aspectos da migração em profundidade através da continuação para baixo dos campos de onda: o tratamento de modos evanescentes e a correção da amplitude dos eventos migrados. Estes dois aspectos são discutidos em meios isotrópicos e para uma classe de meios anisotrópicos. Migrações por diferenças finitas (FD) e por diferenças finitas e Fourier (FFD) podem ser instáveis em meios com forte variação lateral de velocidade. Estes métodos utilizam aproximações de Padé reais para representar o operador que descreve a propagação de ondas descendentes. Estas abordagens não são capazes de tratar corretamente os modos evanescentes, o que pode levar à instabilidades numéricas em meios com forte variação lateral de velocidade. Uma solução possível para esse problema é utilizar aproximação de Padé complexa, que consegue melhor representar os modos evanescentes associados às reflexões pós-críticas, e neste trabalho esta aproximação é utilizada para obter algoritmos FD e híbrido FD/FFD estáveis para migração em meios transversalmente isotrópicos com eixo de simetria vertical (VTI), mesmo na presença de forte variação nas propriedades elásticas do meio. A estabilidade dos algoritmos propostos para meios VTI foi validada através da resposta ao impulso do operador de migração e pela sua aplicação na migração de dados sintéticos, em meios fortemente heterogêneos. Métodos de migração por equação de onda em meios heterogêneos não tratam corretamente a amplitude dos eventos durante a propagação. As equações de onda unidirecionais tradicionais descrevem corretamente apenas a parte cinemática da propagação do campo de onda. Assim, para uma descrição correta das amplitudes deve-se usar as equações de onda unidirecionais de amplitude verdadeira. Em meios verticalmente heterogêneos, as equações de onda unidirecionais de amplitude verdadeira podem ser resolvidas analiticamente. Em meios lateralmente heterogêneos, essas equações não possuem uma solução analítica. Mesmo soluções numéricas tendem a ser instáveis. Para melhorar a compensação de amplitude na migração, em meios com variação lateral de velocidade, é proposto uma aproximação estável para solução da equação de onda unidirecional de amplitude verdadeira. Esta nova aproximação é implementada nas migrações split-step e diferenças finitas e Fourier (FFD). O algoritmo split-step com correção de amplitude foi estendido para meios VTI. A migração pré e pós-empilhamento de dados sintéticos, em meios isotrópicos e anisotrópicos, confirmam o melhor tratamento das amplitudes e estabilidade dos algoritmos propostos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A teoria dos feixes gaussianos foi introduzida na literatura sísmica no início dos anos 80 por pesquisadores russos e tchecos, e foi originalmente utilizada no cálculo do campo de ondas eletromagnéticas, baseado na teoria escalar da difração. Na teoria dos feixes gaussianos, o campo de ondas sísmicas é obtido por uma integral, cujo o integrando é constituído de duas partes, a saber: (1) as amplitudes dos campos das ondas na vizinhança do ponto de observação e (2) a função fase de cada um desses campos de ondas, que neste caso é representada por um tempo de trânsito paraxial complexo. Como ferramenta de imageamento, mais precisamente como operador de migração, os primeiros trabalhos usando feixes gaussianos datam do final da década de 80 e início dos anos 90. A regularidade dos campos de ondas descritos pelos feixes gaussianos, além de sua alta precisão em regiões singulares do modelo de velocidades, tornaram o uso de feixes gaussianos como uma alternativa híbrida viável para a migração. Nesse trabalho, unimos a flexibilidade da migração tipo Kirchhoff em profundidade em verdadeira amplitude com a regularidade da descrição do campo de ondas, representado pela sobreposição de feixes gaussianos. Como forma de controlar de forma estável quantidades usadas na construção de feixes gaussianos, utilizamos informações advindas do volume de Fresnel, mais precisamente a zona de Fresnel ao redor do ponto de reflexão e a zona de Fresnel projetada, localizada ao redor do ponto de registro do sismograma e cuja a informação se encontra nas curvas de reflexão de dados sísmico. Nosso processo de migração pode ser chamado como uma migração Kirchhoff em verdadeira amplitude usando um operador de feixes gaussianos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modelagem 2.5D consiste em simular a propagação do campo de ondas em 3D em meios com simetria de translação em uma direção. Nesta tese esta abordagem é formulada para meios elásticos e anisotrópicos com classe de simetria arbitrária e a geometria de aquisição não precisa coincidir com um plano de simetria do meio. A migração por reversão no tempo do campo de ondas é formulada e implementada através de diferenças finitas 2.5D. Para reduzir os efeitos de retro-espalhamento e melhorar a recuperação da amplitude dos eventos migrados, propomos uma nova condição de imagem para migração reversa no tempo baseada na análise assintótica da condição de imagem clássica por correlação cruzada. Experimentos numéricos indicam que a migração reversa no tempo 2.5D com a nova condição de imagem proposta, melhora a resolução da imagem em relação à migração reversa no tempo 2D e reduz acentuadamente os ruídos causados por retro-espalhamento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A necessidade da adoção de modelos elásticos anisotrópicos, no contexto da sísmica de exploração, vem crescendo com o advento de novas técnicas de aquisição de dados como VSP, walkway VSP, tomografia poço a poço e levantamentos sísmicos com grande afastamento. Meios anisotrópicos, no contexto da sísmica de exploração, são modelos efetivos para explicar a propagação de ondas através de meios que apresentam padrões de heterogeneidade em escala muito menor que o comprimento de onda das ondas sísmicas. Particularmente, estes modelos são muito úteis para explicar o dado sísmico mais robusto que são as medidas de tempo de trânsito. Neste trabalho, são investigados aspectos da propagação de ondas, traçado de raios e inversão de tempos de trânsito em meios anisotrópicos. É estudada a propagação de ondas SH em meios anisotrópicos estratificados na situação mais geral onde estas ondas podem ocorrer, ou seja, em meios monoclínicos com um plano vertical de simetria especular. É mostrado que o campo de ondas SH refletido a partir de um semi-espaço estratificado, não apresenta qualquer informação sobre a possível presença de anisotropia em subsuperfície. São apresentados métodos simples e eficientes para o traçado de raios em 3D através de meios anisotrópicos estratificados, baseados no princípio de Fermat. Estes métodos constituem o primeiro passo para o desenvolvimento de algoritmos de inversão de tempos de trânsito para meios anisotrópicos em 3D, a partir de dados de VSP e walkaway VSP. Esta abordagem é promissora para determinação de modelos de velocidade, que são necessários para migração de dados sísmicos 3D na presença de anisotropia. É efetuada a análise da inversão tomográfica não linear, para meios estratificados transversalmente isotrópicos com um eixo de simetria vertical(TIV). As limitações dos dados de tempo de trânsito de eventos qP para determinação das constantes elásticas, são estabelecidas e caracterizados os efeitos da falta de cobertura angular completa na inversão tomográfica. Um algoritmo de inversão foi desenvolvido e avaliado em dados sintéticos. A aplicação do algoritmo a dados reais demonstra a consistência de meios TIV. Esta abordagem é útil para casos onde há informação a priori sobre a estratificação quase plana das formações e onde os próprios dados do levantamento poço a poço apresentam um alto grau de simetria especular em relação a um plano vertical. Também pode ser útil em interpretações preliminares, onde a estimativa de um meio estratificado, serve como modelo de fundo para se efetuar análises mais detalhadas, por exemplo, como um modelo de velocidades anisotrópico para migração, ou como um modelo de calibração para análises de AVO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho são apresentadas aproximações lineares e quadráticas das equações de Zoeppritz para a obtenção dos coeficientes de reflexão e transmissão de eventos P-P e P-S em função dos ângulos de incidência e da média angular, bem como a análise de inversão linear de AVO, considerando os eventos de reflexão P-P e P-S dissociados e combinados. O uso das chamadas aproximações pseudo-quadráticas foi aplicado para obtenção de aproximações quadráticas apenas para eventos-PP, em torno dos contrastes médios das velocidades de ondas compressionais e cisalhantes e da razão Vs/Vp. Os resultados das aproximações desenvolvidas neste trabalho mostram que as aproximações quadráticas são mais precisas que as lineares, nas duas versões angulares. As comparações entre as aproximações em termos do ângulo de incidência e da média angular mostram que as aproximações quadráticas são equivalentes dentro do limite angular de [0º, 30º]. Por outro lado, as aproximações lineares em função do ângulo de incidência mostram-se mais precisas que as aproximações lineares em função da média angular. Na inversão linear, fez-se análises de sensibilidade e de ambigüidade e observou-se que, nos caso de eventos de reflexão P-P e P-S dissociados, apenas um parâmetro pode ser estimado e que a combinação destes eventos consegue estabilizar a inversão, permitindo a estimativa de dois dentre os parâmetros físicos dos meios (contrastes de impedância, de velocidade de onda P e de módulo de cisalhamento).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa no imageamento sísmicos. Nesta dissertação, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB).Afim de comparar os métodos Kirchhoff e KGB com respeito à sensibilidade em relação ao comprimento da discretização, aplicamos no conjunto de dados conhecido como Marmousi 2-D quatro grids de velocidade, ou seja, 60m, 80m 100m e 150m. Como resultado, temos que ambos os métodos apresentam uma imagem muito melhor para o menor intervalo de discretização da malha de velocidade. O espectro de amplitude das seções migradas nos fornece o conteúdo de frequência espacial das seções das imagens obtidas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho é apresentada uma análise do esquema de inversão linear para a estimativa de anisotropia na vizinhança de um receptor situado em um poço a partir de da componente vertical do vetor de vagarosidade e do vetor de polarização de ondas P medidops em experimentos de VSP walkaway multiazimutal. Independente do meio acima do geofone (homogêneo ou heterogêneo) e da forma do poço (pode ser direcional ou curvado, vertical e inclinado), a inversão é feita a partir de uma aproximação de primeira ordem em torno de um meio isotrópico de referência. O esquma da inversão é analisado considerando fatores como: o nível de ruído nos dados, o tipo de onda P, o grau de anisotropia do meio, a escolha dos parâmetros no meio isotrópico de referência e grau de heterogeneidade do meio. Os resultados são apresentados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

É apresentada uma solução totalmente analítica do modelo da falha infinita para o modo TE magnetotelúrico, levando em conta a presença do ar, utilizando como base o trabalho de Sampaio apresentado em 1985, que apresenta uma solução parcialmente analítica e parcialmente numérica – solução híbrida. Naquela solução foram aplicadas oito condições de contorno, sendo que em quatro delas foram encontradas inconsistências matemáticas que foram dirimidas com alterações adequadas nas soluções propostas por Sampaio. Tais alterações propiciaram a chegarse à solução totalmente analítica aqui apresentada. A solução obtida foi comparada com a solução de Weaver, com a de Sampaio e com o resultado do método numérico dos elementos finitos para contrastes de resistividade iguais a 2, 10 e 50. A comparação da solução analítica, para o campo elétrico normalizado, com a solução de elementos finitos mostra que a solução analítica proporcionou resultados mais próximos, em comparação aos fornecidos por Weaver e por Sampaio. Este é um problema muito difícil, aberto para uma solução analítica definitiva. A solução apresentada aqui é, nesta direção, um grande passo.