117 resultados para Symmetric Kravchuk polynomials
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
in this paper, we derive an explicit expression for the parameter sequences of a chain sequence in terms of the corresponding orthogonal polynomials and their associated polynomials. We use this to study the orthogonal polynomials K-n((lambda.,M,k)) associated with the probability measure dphi(lambda,M,k;x), which is the Gegenbauer measure of parameter lambda + 1 with two additional mass points at +/-k. When k = 1 we obtain information on the polynomials K-n((lambda.,M)) which are the symmetric Koornwinder polynomials. Monotonicity properties of the zeros of K-n((lambda,M,k)) in relation to M and k are also given. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We consider the real Szego polynomials and obtain some relations to certain self inversive orthogonal L-polynomials defined on the unit circle and corresponding symmetric orthogonal polynomials on real intervals. We also consider the polynomials obtained when the coefficients in the recurrence relations satisfied by the self inversive orthogonal L-polynomials are rotated. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We show how symmetric orthogonal polynomials can be linked to polynomials associated with certain orthogonal L-polynomials. We provide some examples to illustrate the results obtained Finally as an application, we derive information regarding the orthogonal polynomials associated with the weight function (1 + kx(2))(1 - x(2))(-1/2), k > 0.
Resumo:
In this paper the recurrence relations of symmetric orthogonal polynomials whose measures are related to each other in a certain way are considered. Many of the relations satisfied by the coefficients of the recurrence relations are exposed. The results are applied to obtain, for example, information regarding certain Sobolev orthogonal polynomials and regarding the measures of certain orthogonal polynomial sequences with twin periodic recurrence coefficients. (C) 2001 IMACS. Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
We give some properties relating the recurrence relations of orthogonal polynomials associated with any two symmetric distributions d phi(1)(x) and d phi(2)(x) such that d phi(2)(x) = (I + kx(2))d phi(1)(x). AS applications of these properties, recurrence relations for many interesting systems of orthogonal polynomials are obtained.
Resumo:
Szego{double acute} has shown that real orthogonal polynomials on the unit circle can be mapped to orthogonal polynomials on the interval [-1,1] by the transformation 2x=z+z-1. In the 80's and 90's Delsarte and Genin showed that real orthogonal polynomials on the unit circle can be mapped to symmetric orthogonal polynomials on the interval [-1,1] using the transformation 2x=z1/2+z-1/2. We extend the results of Delsarte and Genin to all orthogonal polynomials on the unit circle. The transformation maps to functions on [-1,1] that can be seen as extensions of symmetric orthogonal polynomials on [-1,1] satisfying a three-term recurrence formula with real coefficients {cn} and {dn}, where {dn} is also a positive chain sequence. Via the results established, we obtain a characterization for a point w(|w|=1) to be a pure point of the measure involved. We also give a characterization for orthogonal polynomials on the unit circle in terms of the two sequences {cn} and {dn}. © 2013 Elsevier Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper deals with the classes S-3(omega, beta, b) of strong distribution functions defined on the interval [beta(2)/b, b], 0 < beta < b <= infinity, where 2 omega epsilon Z. The classification is such that the distribution function psi epsilon S-3(omega, beta, b) has a (reciprocal) symmetry, depending on omega, about the point beta. We consider properties of the L-orthogonal polynomials associated with psi epsilon S-3(omega, beta, b). Through linear combination of these polynomials we relate them to the L-orthogonal polynomials associated with some omega epsilon S-3(1/2, beta, b). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Inner products of the type < f, g >(S) = < f, g >psi(0) + < f', g'>psi(1), where one of the measures psi(0) or psi(1) is the measure associated with the Gegenbauer polynomials, are usually referred to as Gegenbauer-Sobolev inner products. This paper deals with some asymptotic relations for the orthogonal polynomials with respect to a class of Gegenbauer-Sobolev inner products. The inner products are such that the associated pairs of symmetric measures (psi(0), psi(1)) are not within the concept of symmetrically coherent pairs of measures.
Resumo:
We prove a relation between two different types of symmetric quadrature rules, where one of the types is the classical symmetric interpolatory quadrature rules. Some applications of a new quadrature rule which was obtained through this relation are also considered.
Resumo:
We consider interpolatory quadrature rules with nodes and weights satisfying symmetric properties in terms of the division operator. Information concerning these quadrature rules is obtained using a transformation that exists between these rules and classical symmetric interpolatory quadrature rules. In particular, we study those interpolatory quadrature rules with two fixed nodes. We obtain specific examples of such quadrature rules.
Resumo:
We consider some of the relations that exist between real Szegö polynomials and certain para-orthogonal polynomials defined on the unit circle, which are again related to certain orthogonal polynomials on [-1, 1] through the transformation x = (z1/2+z1/2)/2. Using these relations we study the interpolatory quadrature rule based on the zeros of polynomials which are linear combinations of the orthogonal polynomials on [-1, 1]. In the case of any symmetric quadrature rule on [-1, 1], its associated quadrature rule on the unit circle is also given.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)