98 resultados para Asymptotic normality of sums
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rossler system and synchronization of the hyperchaotic Rossler system. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
FUNDAMENTO: O tabagismo altera a função autonômica. OBJETIVO: Investigar os efeitos agudos do tabagismo sobre a modulação autonômica e a recuperação dos índices de variabilidade de frequência cardíaca (VFC) pós-fumo, por meio do plot de Poincaré e índices lineares. MÉTODOS: Foram avaliados 25 fumantes jovens, os quais tiveram a frequência cardíaca analisada, batimento a batimento, na posição sentada, após 8 horas de abstinência, por 30 minutos em repouso, 20 minutos durante o fumo e 30 minutos pós-fumo. Análise de variância para medidas repetidas, seguido do teste de Tukey, ou teste de Friedman seguido do teste de Dunn foram aplicados dependendo da normalidade dos dados, com p < 0,05. RESULTADOS: Durante o fumo, houve redução dos índices SD1 (23,4 ± 9,2 vs 13,8 ± 4,8), razão SD1/SD2 (0,31 ± 0,08 vs 0,2 ± 0,04), RMSSD (32,7 ± 13 vs 19,1 ± 6,8), SDNN (47,6 ± 14,8 vs 35,5 ± 8,4), HFnu (32,5 ± 11,6 vs 19 ± 8,1) e do intervalo RR (816,8 ± 89 vs 696,5 ± 76,3) em relação ao repouso, enquanto que aumentos do índice LFnu (67,5 ± 11,6 vs 81 ± 8,1) e da razão LF/HF (2,6 ± 1,7 vs 5,4 ± 3,1) foram observados. A análise visual do plot mostrou menor dispersão dos intervalos RR durante o fumo. Com exceção da razão SD1/SD2, os demais índices apresentaram recuperação dos valores, 30 minutos após o tabagismo. CONCLUSÃO: O tabagismo produziu agudamente modificações no controle autonômico, caracterizadas por ativação simpática e retirada vagal, com recuperação 30 minutos após o fumo.
Resumo:
O objetivo deste trabalho foi avaliar o número de Rondonia rondoni no intestino de Piaractus mesopotamicus, por meio da diferença entre peso úmido e peso seco das amostras de parasitos para cada hospedeiro, a partir da relação do peso seco e número de parasitos pré-estabelecida. Amostras totais de R. rondoni, de 37 espécimes de Piaractus mesopotamicus, foram medidas para obtenção do peso úmido, desidratadas em estufa com temperatura entre 55ºC e 60ºC e, após 24 h seu peso seco foi determinado. Por meio de uma regra de três simples, calculou-se o número de parasitos a partir da diferença entre o peso úmido e o peso seco, considerando um erro padrão médio de 6,027 para um número médio de 1010 indivíduos, quantificado em ensaio prévio. A equação da regressão linear estimada foi de y = 13,138x - 162,01 e r² = 0,9989, a qual foi significativa (p < 0,01), sendo y o número de parasitos e x o peso seco. A normalidade dos dados foi verificada com o teste de Kolmogorov-Smirnov significativo para p < 0,01.
Resumo:
Descrevem-se os parâmetros hematológicos, urinários, perfil sorológico de aglutininas antibrucélicas e resultados de isolamento bacteriano de swab vaginal, líquido prostático e hemocultura de 12 cães naturalmente infectados por Brucella canis. Observaram-se flutuação dos resultados sorológicos, ausência de isolamento de B. canis nos diversos materiais colhidos e valores hematológicos e urinários predominantemente normais. Discute-se o diagnóstico de brucelose canina em nível individual.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work we consider a one-dimensional quasilinear parabolic equation and we prove that the lap number of any solution cannot increase through orbits as the time passes if the initial data is a continuous function. We deal with the lap number functional as a Lyapunov function, and apply lap number properties to reach an understanding on the asymptotic behavior of a particular problem. (c) 2006 Published by Elsevier Ltd.
Resumo:
Dichotomic maps are considered by means of the stability and asymptotic stability of the null solution of a class of differential equations with argument [t] via associated discrete equations, where [.] designates the greatest integer function.
Resumo:
A new procedure is given for the study of stability and asymptotic stability of the null solution of the non autonomous discrete equations by the method of dichotomic maps, which it includes Liapunov's Method asa special case. Examples are given to illustrate the application of the method.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Globalization of dairy cattle breeding has created a need for international sire proofs. Some early methods for converting proofs from one population to another are based on simple linear regression. An alternative robust regression method based on the t-distribution is presented, and maximum likelihood and Bayesian techniques for analysis are described, including the situation in which some proofs are missing. Procedures were used to investigate the relationship between Holstein sire proofs obtained by two Uruguayan genetic evaluation programs. The results suggest that conversion equations developed from data including only sires having proofs in both populations can lead to distorted results, relative to estimates obtained using techniques for incomplete data. There was evidence of non-normality of regression residuals, which constitutes an additional source of bias. A robust estimator may not solve all problems, but can provide simple conversion equations that are less sensitive to outlying proofs and to departures from assumptions.
Resumo:
In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search of infrared finite solutions, paying particular attention to the role of the seagull graph in enforcing transversality, the necessity of introducing massless poles in the three-gluon vertex, and the incorporation of the correct renormalization group properties. In addition, we present a method for regulating the seagull-type contributions based on dimensional regularization; its applicability depends crucially on the asymptotic behavior of the solutions in the deep ultraviolet, and in particular on the anomalous dimension of the dynamically generated gluon mass. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles belonging to different Lorentz structures. The resulting integral equation is then solved numerically, the infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is determined. Various open questions and possible connections with different approaches in the literature are discussed. © SISSA 2006.
Resumo:
In this paper, we consider the propagation of water waves in a long-wave asymptotic regime, when the bottom topography is periodic on a short length scale. We perform a multiscale asymptotic analysis of the full potential theory model and of a family of reduced Boussinesq systems parametrized by a free parameter that is the depth at which the velocity is evaluated. We obtain explicit expressions for the coefficients of the resulting effective Korteweg-de Vries (KdV) equations. We show that it is possible to choose the free parameter of the reduced model so as to match the KdV limits of the full and reduced models. Hence the reduced model is optimal regarding the embedded linear weakly dispersive and weakly nonlinear characteristics of the underlying physical problem, which has a microstructure. We also discuss the impact of the rough bottom on the effective wave propagation. In particular, nonlinearity is enhanced and we can distinguish two regimes depending on the period of the bottom where the dispersion is either enhanced or reduced compared to the flat bottom case. © 2007 The American Physical Society.
Resumo:
Chiral symmetry breaking in QCD is studied introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamically massive gluons. The effective confining propagator has the form 1/(k2 +m2)2 and we study the bifurcation equation finding limits on the parameter m below which a satisfactory fermion mass solution is generated. Since the coupling constant and gluon propagator are damped in the infrared, due to the presence of a dynamical gluon mass, the major part of the chiral breaking is only due to the confining propagator and related to the low momentum region of the gap equation. We study the asymptotic behavior of the gap equation containing this confinement effect and massive gluon exchange, and find that the symmetry breaking can be approximated by an effective four-fermion interaction generated by the confining propagator. We compute some QCD chiral parameters as a function of m, finding values compatible with the experimental data. We find a simple approximate relation between the fermion condensate and dynamical mass for a given representation as a function of the parameters appearing in the effective confining propagator. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.