Patterns in parabolic problems with nonlinear boundary conditions
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
15/01/2007
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 2003/10042-0 Processo FAPESP: 2000/01479-8 We obtain existence of asymptotically stable nonconstant equilibrium solutions for semilinear parabolic equations with nonlinear boundary conditions on small domains connected by thin channels. We prove the convergence of eigenvalues and eigenfunctions of the Laplace operator in such domains. This information is used to show that the asymptotic dynamics of the heat equation in this domain is equivalent to the asymptotic dynamics of a system of two ordinary differential equations diffusively (weakly) coupled. The main tools employed are the invariant manifold theory and a uniform trace theorem. (c) 2006 Elsevier B.V. All rights reserved. |
Formato |
1216-1239 |
Identificador |
http://dx.doi.org/10.1016/j.jmaa.2006.02.046 Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 325, n. 2, p. 1216-1239, 2007. 0022-247X http://hdl.handle.net/11449/32922 10.1016/j.jmaa.2006.02.046 WOS:000242730600032 WOS000242730600032.pdf |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal of Mathematical Analysis and Applications |
Direitos |
openAccess |
Palavras-Chave | #Semilinear parabolic problems #Nonlinear boundary conditions #Dumbbell domains #Stable nonconstant equilibria #Invariant manifolds |
Tipo |
info:eu-repo/semantics/article |