Lap number properties for p-Laplacian problems investigated by Lyapunov methods
| Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
|---|---|
| Data(s) |
20/05/2014
20/05/2014
01/03/2007
|
| Resumo |
In this work we consider a one-dimensional quasilinear parabolic equation and we prove that the lap number of any solution cannot increase through orbits as the time passes if the initial data is a continuous function. We deal with the lap number functional as a Lyapunov function, and apply lap number properties to reach an understanding on the asymptotic behavior of a particular problem. (c) 2006 Published by Elsevier Ltd. |
| Formato |
1005-1015 |
| Identificador |
http://dx.doi.org/10.1016/j.na.2006.01.006 Nonlinear Analysis-theory Methods & Applications. Oxford: Pergamon-Elsevier B.V., v. 66, n. 5, p. 1005-1015, 2007. 0362-546X http://hdl.handle.net/11449/34069 10.1016/j.na.2006.01.006 WOS:000243829800001 |
| Idioma(s) |
eng |
| Publicador |
Elsevier B.V. |
| Relação |
Nonlinear Analysis-theory Methods & Applications |
| Direitos |
closedAccess |
| Palavras-Chave | #p-Laplacian #reaction-diffusion #lap number #omega-limit |
| Tipo |
info:eu-repo/semantics/article |