An Optimal Linear Control Design for Nonlinear Systems
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
30/09/2013
20/05/2014
30/09/2013
20/05/2014
01/10/2008
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) This paper studies the linear feedback control strategies for nonlinear systems. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations the Duffing oscillator and the nonlinear automotive active suspension system are provided to show the effectiveness of this method. |
Formato |
279-284 |
Identificador |
http://dx.doi.org/10.1590/S1678-58782008000400002 Journal of The Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro Rj: Abcm Brazilian Soc Mechanical Sciences & Engineering, v. 30, n. 4, p. 279-284, 2008. 1678-5878 http://hdl.handle.net/11449/24936 10.1590/S1678-58782008000400002 S1678-58782008000400002 WOS:000265311000002 |
Idioma(s) |
eng |
Publicador |
Abcm Brazilian Soc Mechanical Sciences & Engineering |
Relação |
Journal of the Brazilian Society of Mechanical Sciences and Engineering |
Direitos |
openAccess |
Palavras-Chave | #optimal control #nonlinear system #duffing oscillator #active suspension system #chaotic attractor |
Tipo |
info:eu-repo/semantics/article |