An Optimal Linear Control Design for Nonlinear Systems


Autoria(s): Rafikov, Marat; Balthazar, José Manoel; Tusset, Angelo Marcelo
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

30/09/2013

20/05/2014

30/09/2013

20/05/2014

01/10/2008

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

This paper studies the linear feedback control strategies for nonlinear systems. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations the Duffing oscillator and the nonlinear automotive active suspension system are provided to show the effectiveness of this method.

Formato

279-284

Identificador

http://dx.doi.org/10.1590/S1678-58782008000400002

Journal of The Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro Rj: Abcm Brazilian Soc Mechanical Sciences & Engineering, v. 30, n. 4, p. 279-284, 2008.

1678-5878

http://hdl.handle.net/11449/24936

10.1590/S1678-58782008000400002

S1678-58782008000400002

WOS:000265311000002

Idioma(s)

eng

Publicador

Abcm Brazilian Soc Mechanical Sciences & Engineering

Relação

Journal of the Brazilian Society of Mechanical Sciences and Engineering

Direitos

openAccess

Palavras-Chave #optimal control #nonlinear system #duffing oscillator #active suspension system #chaotic attractor
Tipo

info:eu-repo/semantics/article