A Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt Damping


Autoria(s): Raposo, C. A.; Bastos, W. D.; Avila, J. A. J.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2011

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

In this work we consider a transmission problem for the longitudinal displacement of a Euler-Bernoulli beam, where one small part of the beam is made of a viscoelastic material with Kelvin-Voigt constitutive relation. We use semigroup theory to prove existence and uniqueness of solutions. We apply a general results due to L. Gearhart [5] and J. Pruss [10] in the study of asymptotic behavior of solutions and prove that the semigroup associated to the system is exponentially stable. A numerical scheme is presented,

Formato

17-28

Identificador

http://www.naturalspublishing.com/Article.asp?ArtcID=91

Applied Mathematics & Information Sciences. Kalamazoo: Natural Sciences Publishing Corporation, v. 5, n. 1, p. 17-28, 2011.

1935-0090

http://hdl.handle.net/11449/40566

WOS:000297434000002

Idioma(s)

eng

Publicador

Natural Sciences Publishing Corporation

Relação

Applied Mathematics & Information Sciences

Direitos

closedAccess

Palavras-Chave #Transmission problem #Exponencial stability #Euler-Bernoulli beam #Kelvin-Voigt damping #Semigroup #Numerical scheme
Tipo

info:eu-repo/semantics/article