A Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt Damping
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/01/2011
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) In this work we consider a transmission problem for the longitudinal displacement of a Euler-Bernoulli beam, where one small part of the beam is made of a viscoelastic material with Kelvin-Voigt constitutive relation. We use semigroup theory to prove existence and uniqueness of solutions. We apply a general results due to L. Gearhart [5] and J. Pruss [10] in the study of asymptotic behavior of solutions and prove that the semigroup associated to the system is exponentially stable. A numerical scheme is presented, |
Formato |
17-28 |
Identificador |
http://www.naturalspublishing.com/Article.asp?ArtcID=91 Applied Mathematics & Information Sciences. Kalamazoo: Natural Sciences Publishing Corporation, v. 5, n. 1, p. 17-28, 2011. 1935-0090 http://hdl.handle.net/11449/40566 WOS:000297434000002 |
Idioma(s) |
eng |
Publicador |
Natural Sciences Publishing Corporation |
Relação |
Applied Mathematics & Information Sciences |
Direitos |
closedAccess |
Palavras-Chave | #Transmission problem #Exponencial stability #Euler-Bernoulli beam #Kelvin-Voigt damping #Semigroup #Numerical scheme |
Tipo |
info:eu-repo/semantics/article |