20 resultados para Numérotation de Fibonacci
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This thesis aims to present a study of the Fibonacci sequence, initiated from a simple problem of rabbits breeding and the Golden Ratio, which originated from a geometrical construction, for applications in basic education. The main idea of the thesis is to present historical records of the occurrence of these concepts in nature and science and their influence on social, cultural and scientific environments. Also, it will be presented the identification and the characterization of the basic properties of these concepts and howthe connection between them occurs,and mainly, their intriguing consequences. It is also shown some activities emphasizing geometric constructions, links to other mathematics areas, curiosities related to these concepts and the analysis of questions present in vestibular (SAT-Scholastic Aptitude Test) and Enem(national high school Exam) in order to show the importance of these themes in basic education, constituting an excellent opportunity to awaken the students to new points of view in the field of science and life, from the presented subject and to promote new ways of thinking mathematics as a transformative science of society.
Resumo:
This dissertation analyses the influence of sugar-phosphate structure in the electronic transport in the double stretch DNA molecule, with the sequence of the base pairs modeled by two types of quasi-periodic sequences: Rudin-Shapiro and Fibonacci. For the sequences, the density of state was calculated and it was compared with the density of state of a piece of human DNA Ch22. After, the electronic transmittance was investigated. In both situations, the Hamiltonians are different. On the analysis of density of state, it was employed the Dyson equation. On the transmittance, the time independent Schrödinger equation was used. In both cases, the tight-binding model was applied. The density of states obtained through Rudin-Shapiro sequence reveal to be similar to the density of state for the Ch22. And for transmittance only until the fifth generation of the Fibonacci sequence was acquired. We have considered long range correlations in both transport mechanism
Resumo:
In this work, we have studied the acoustic phonon wave propagation within the periodic and quasiperiodic superlattices of Fibonacci type. These structures are formed by phononic crystals, whose periodicity allows the raise of regions known as stop bands, which prevent the phonon propagation throughout the structure for specific frequency values. This phenomenon allows the construction of acoustic filters with great technological potential. Our theoretical model were based on the method of the transfer matrix, thery acoustics phonons which describes the propagation of the transverse and longitudinal modes within a unit cell, linking them with the precedent cell in the multilayer structure. The transfer matrix is built taking into account the elastic and electromagnetic boundary conditions in the superllatice interfaces, and it is related to the coupled differential equation solutions (elastic and electromagnetic) that describe each model under consideration. We investigated the piezoelectric properties of GaN and AlN the nitride semiconductors, whose properties are important to applications in the semiconductor device industry. The calculations that characterize the piezoelectric system, depend strongly on the cubic (zinc-bend) and hexagonal (wurtzite) crystal symmetries, that are described the elastic and piezoelectric tensors. The investigation of the liquid Hg (mercury), Ga (gallium) and Ar (argon) systems in static conditions also using the classical theory of elasticity. Together with the Euler s equation of fluid mechanics they one solved to the solid/liquid and the liquid/liquid interfaces to obtain and discuss several interesting physical results. In particular, the acoustical filters obtained from these structures are again presented and their features discussed
Resumo:
Systems whose spectra are fractals or multifractals have received a lot of attention in recent years. The complete understanding of the behavior of many physical properties of these systems is still far from being complete because of the complexity of such systems. Thus, new applications and new methods of study of their spectra have been proposed and consequently a light has been thrown on their properties, enabling a better understanding of these systems. We present in this work initially the basic and necessary theoretical framework regarding the calculation of energy spectrum of elementary excitations in some systems, especially in quasiperiodic ones. Later we show, by using the Schr¨odinger equation in tight-binding approximation, the results for the specific heat of electrons within the statistical mechanics of Boltzmann-Gibbs for one-dimensional quasiperiodic systems, growth by following the Fibonacci and Double Period rules. Structures of this type have already been exploited enough, however the use of non-extensive statistical mechanics proposed by Constantino Tsallis is well suited to systems that have a fractal profile, and therefore our main objective was to apply it to the calculation of thermodynamical quantities, by extending a little more the understanding of the properties of these systems. Accordingly, we calculate, analytical and numerically, the generalized specific heat of electrons in one-dimensional quasiperiodic systems (quasicrystals) generated by the Fibonacci and Double Period sequences. The electronic spectra were obtained by solving the Schr¨odinger equation in the tight-binding approach. Numerical results are presented for the two types of systems with different values of the parameter of nonextensivity q
Resumo:
There is nowadays a growing demand for located cooling and stabilization in optical and electronic devices, haul of portable systems of cooling that they allow a larger independence in several activities. The modules of thermoelectrical cooling are bombs of heat that use efect Peltier, that consists of the production of a temperature gradient when an electric current is applied to a thermoelectrical pair formed by two diferent drivers. That efect is part of a class of thermoelectrical efcts that it is typical of junctions among electric drivers. The modules are manufactured with semiconductors. The used is the bismuth telluride Bi2Te3, arranged in a periodic sequence. In this sense the idea appeared of doing an analysis of a system that obeys the sequence of Fibonacci. The sequence of Fibonacci has connections with the golden proportion, could be found in the reproductive study of the bees, in the behavior of the light and of the atoms, as well as in the growth of plants and in the study of galaxies, among many other applications. An apparatus unidimensional was set up with the objective of investigating the thermal behavior of a module that obeys it a rule of growth of the type Fibonacci. The results demonstrate that the modules that possess periodic arrangement are more eficient
Resumo:
We study the optical-phonon spectra in periodic and quasiperiodic (Fibonacci type) superlattices made up from III-V nitride materials (GaN and AlN) intercalated by a dielectric material (silica - SiO2). Due to the misalignments between the silica and the GaN, AlN layers that can lead to threading dislocation of densities as high as 1010 cm−1, and a significant lattice mismatch (_ 14%), the phonon dynamics is described by a coupled elastic and electromagnetic equations beyond the continuum dielectric model, stressing the importance of the piezoelectric polarization field in a strained condition. We use a transfer-matrix treatment to simplify the algebra, which would be otherwise quite complicated, allowing a neat analytical expressions for the phonon dispersion relation. Furthermore, a quantitative analysis of the localization and magnitude of the allowed band widths in the optical phonon s spectra, as well as their scale law are presented and discussed
Resumo:
We present a study of nanostructured magnetic multilayer systems in order to syn- thesize and analyze the properties of periodic and quasiperiodic structures. This work evolved from the deployment and improvement of the sputtering technique in our labora- tories, through development of a methodology to synthesize single crystal ultrathin Fe (100) films, to the final goal of growing periodic and quasiperiodic Fe/Cr multilayers and investi- gating bilinear and biquadratic exchange coupling between ferromagnetic layer dependence for each generation. Initially we systematically studied the related effects between deposition parameters and the magnetic properties of ultrathin Fe films, grown by DC magnetron sput- tering on MgO(100) substrates. We modified deposition temperature and film thickness, in order to improve production and reproduction of nanostructured monocrystalline Fe films. For this set of samples we measured MOKE, FMR, AFM and XPS, with the aim of investi- gating their magnocrystalline and structural properties. From the magnetic viewpoint, the MOKE and FMR results showed an increase in magnetocrystalline anisotropy due to in- creased temperature. AFM measurements provided information about thickness and surface roughness, whereas XPS results were used to analyze film purity. The best set of parame- ters was used in the next stage: investigation of the structural effect on magnetic multilayer properties. In this stage multilayers composed of interspersed Fe and Cr films are deposited, following the Fibonacci periodic and quasiperiodic growth sequence on MgO (100) substrates. The behavior of MOKE and FMR curves exhibit bilinear and biquadratic exchange coupling between the ferromagnetic layers. By computationally adjusting magnetization curves, it was possible to determine the nature and intensity of the interaction between adjacent Fe layers. After finding the global minimum of magnetic energy, we used the equilibrium an- gles to obtain magnetization and magnetoresistance curves. The results observed over the course of this study demonstrate the efficiency and versatility of the sputtering technique in the synthesis of ultrathin films and high-quality multilayers. This allows the deposition of magnetic nanostructures with well-defined magnetization and magnetoresistance parameters and possible technological applications
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
We studied the spin waves modes that can propagate in magnetic multilayers composed of ferromagnetic metallic films in the nanometer scale. The ferromagnetic films (iron) are separated and coupled through the nonmagnetic spacer films (chromium). The films that make up the multilayer are stacked in a quasiperiodic pattern, following the Fibonacci and double period sequences. We used a phenomenological theory taking into account: the Zeeman energy (between the ferromagnetic films and the external magnetic field), the energy of the magneto-crystalline anisotropy (present in the ferromagnetic films), the energy of the bilinear and biquadratic couplings (between the ferromagnetic films) and the energy of the dipole-dipole interaction (between the ferromagnetic films), to describe the system. The total magnetic energy of the system is numerically minimized and the equilibrium angles of the magnetization of each ferromagnetic film are determined. We solved the equation of motion of the multilayer to find the dispersion relation for the system and, as a consequence, the spin waves modes frequencies. Our theoretical results show that, in the case of trilayers (Fe/Cr/Fe), our model reproduces with excellent agreement experimental results of Brillouin light scattering, known from the literature, by adjusting the physical parameters of the nanofilms. Furthermore, we generalize the model to N ferromagnetic layers which allowed us to determine how complex these systems become when we increase the number of components. It is worth noting that our theoretical calculations generalize all the results known from the literature
Resumo:
In this work, we present a theoretical study of the propagation of electromagnetic waves in multilayer structures called Photonic Crystals. For this purpose, we investigate the phonon-polariton band gaps in periodic and quasi-periodic (Fibonacci-type) multilayers made up of both positive and negative refractive index materials in the terahertz (THz) region. The behavior of the polaritonic band gaps as a function of the multilayer period is investigated systematically. We use a theoretical model based on the formalism of transfer matrix in order to simplify the algebra involved in obtaining the dispersion relation of phonon-polaritons (bulk and surface modes). We also present a quantitative analysis of the results, pointing out the distribution of the allowed polaritonic bandwidths for high Fibonacci generations, which gives good insight about their localization and power laws. We calculate the emittance spectrum of the electromagnetic radiation, in THZ frequency, normally and obliquely incident (s and p polarized modes) on a one-dimensional multilayer structure composed of positive and negative refractive index materials organized periodically and quasi-periodically. We model the negative refractive index material by a effective medium whose electric permittivity is characterized by a phonon-polariton frequency dependent dielectric function, while for the magnetic permeability we have a Drude like frequency-dependent function. Similarity to the one-dimensional photonic crystal, this layered effective medium, called polaritonic Crystals, allow us the control of the electromagnetic propagation, generating regions named polaritonic bandgap. The emittance spectra are determined by means of a well known theoretical model based on Kirchoff s second law, together with a transfer matrix formalism. Our results shows that the omnidirectional band gaps will appear in the THz regime, in a well defined interval, that are independent of polarization in periodic case as well as in quasiperiodic case
Resumo:
In this paper we investigate the spectra of band structures and transmittance in magnonic quasicrystals that exhibit the so-called deterministic disorders, specifically, magnetic multilayer systems, which are built obeying to the generalized Fibonacci (only golden mean (GM), silver mean (SM), bronze mean (BM), copper mean (CM) and nickel mean (NM) cases) and k-component Fibonacci substitutional sequences. The theoretical model is based on the Heisenberg Hamiltonian in the exchange regime, together with the powerful transfer matrix method, and taking into account the RPA approximation. The magnetic materials considered are simple cubic ferromagnets. Our main interest in this study is to investigate the effects of quasiperiodicity on the physical properties of the systems mentioned by analyzing the behavior of spin wave propagation through the dispersion and transmission spectra of these structures. Among of these results we detach: (i) the fragmentation of the bulk bands, which in the limit of high generations, become a Cantor set, and the presence of the mig-gap frequency in the spin waves transmission, for generalized Fibonacci sequence, and (ii) the strong dependence of the magnonic band gap with respect to the parameters k, which determines the amount of different magnetic materials are present in quasicrystal, and n, which is the generation number of the sequence k-component Fibonacci. In this last case, we have verified that the system presents a magnonic band gap, whose width and frequency region can be controlled by varying k and n. In the exchange regime, the spin waves propagate with frequency of the order of a few tens of terahertz (THz). Therefore, from a experimental and technological point of view, the magnonic quasicrystals can be used as carriers or processors of informations, and the magnon (the quantum spin wave) is responsible for this transport and processing
Resumo:
We address the generalization of thermodynamic quantity q-deformed by q-algebra that describes a general algebra for bosons and fermions . The motivation for our study stems from an interest to strengthen our initial ideas, and a possible experimental application. On our journey, we met a generalization of the recently proposed formalism of the q-calculus, which is the application of a generalized sequence described by two parameters deformation positive real independent and q1 and q2, known for Fibonacci oscillators . We apply the wellknown problem of Landau diamagnetism immersed in a space D-dimensional, which still generates good discussions by its nature, and dependence with the number of dimensions D, enables us future extend its application to systems extra-dimensional, such as Modern Cosmology, Particle Physics and String Theory. We compare our results with some experimentally obtained performing major equity. We also use the formalism of the oscillators to Einstein and Debye solid, strengthening the interpretation of the q-deformation acting as a factor of disturbance or impurity in a given system, modifying the properties of the same. Our results show that the insertion of two parameters of disorder, allowed a wider range of adjustment , i.e., enabling change only the desired property, e.g., the thermal conductivity of a same element without the waste essence
Resumo:
In this work we present a theoretical study about the properties of magnetic polaritons in superlattices arranged in a periodic and quasiperiodic fashíons. In the periodic superlattice, in order to describe the behavior of the bulk and surface modes an effective medium approach, was used that simplify enormously the algebra involved. The quasi-periodic superlattice was described by a suitable theoretical model based on a transfer-matrix treatment, to derive the polariton's dispersion relation, using Maxwell's equations (including effect of retardation). Here, we find a fractal spectra characterized by a power law for the distribution of the energy bandwidths. The localization and scaling behavior of the quasiperiodic structure were studied for a geometry where the wave vector and the external applied magnetic field are in the same plane (Voigt geometry). Numerical results are presented for the ferromagnet Fe and for the metamagnets FeBr2 and FeCl2
Resumo:
In this work we study, for two different growth directions, multilayers of nanometric magnetic metallic lms grown, using Fibonacci sequences, in such a way that the thickness of the non-magnetic spacer may vary from a pair of lms to another. We applied a phenomenological theory that uses the magnetic energy to describe the behavior of the system. After we found numerically the global minimum of the total energy, we used the equilibrium angles to obtain magnetization and magnetoresistance curves. Next, we solved the equation of motion of the multilayers to nd the dispersion relation for the system. The results show that, when spacers are used with thickness so that the biquadratic coupling is strong in comparison to the bilinear one, non usual behaviors for both magnetization and magnetoresistance are observed. For example, a dependence on the parity of the Fibonacci generation utilized for constructing the system, a low magnetoresistance step in low external magnetic fields and regions that show high sensibility to small variations of the applied field. Those behaviors are not present in quasiperiodic magnetic multilayers with constant spacer thickness