13 resultados para Complex networks. Magnetic system. Metropolis
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
We studied the Ising model ferromagnetic as spin-1/2 and the Blume-Capel model as spin-1, > 0 on small world network, using computer simulation through the Metropolis algorithm. We calculated macroscopic quantities of the system, such as internal energy, magnetization, specific heat, magnetic susceptibility and Binder cumulant. We found for the Ising model the same result obtained by Koreans H. Hong, Beom Jun Kim and M. Y. Choi [6] and critical behavior similar Blume-Capel model
Resumo:
In this work we study a connection between a non-Gaussian statistics, the Kaniadakis
statistics, and Complex Networks. We show that the degree distribution P(k)of
a scale free-network, can be calculated using a maximization of information entropy in
the context of non-gaussian statistics. As an example, a numerical analysis based on the
preferential attachment growth model is discussed, as well as a numerical behavior of
the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive
epidemic process (DEP) on a regular lattice one-dimensional. The model is composed
of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion
rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This
model belongs to the category of non-equilibrium systems with an absorbing state and a
phase transition between active an inactive states. We investigate the critical behavior of
the DEP using an auto-adaptive algorithm to find critical points: the method of automatic
searching for critical points (MASCP). We compare our results with the literature and we
find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases
DA =DB, DA
Resumo:
In this thesis we investigate physical problems which present a high degree of complexity using tools and models of Statistical Mechanics. We give a special attention to systems with long-range interactions, such as one-dimensional long-range bondpercolation, complex networks without metric and vehicular traffic. The flux in linear chain (percolation) with bond between first neighbor only happens if pc = 1, but when we consider long-range interactions , the situation is completely different, i.e., the transitions between the percolating phase and non-percolating phase happens for pc < 1. This kind of transition happens even when the system is diluted ( dilution of sites ). Some of these effects are investigated in this work, for example, the extensivity of the system, the relation between critical properties and the dilution, etc. In particular we show that the dilution does not change the universality of the system. In another work, we analyze the implications of using a power law quality distribution for vertices in the growth dynamics of a network studied by Bianconi and Barabási. It incorporates in the preferential attachment the different ability (fitness) of the nodes to compete for links. Finally, we study the vehicular traffic on road networks when it is submitted to an increasing flux of cars. In this way, we develop two models which enable the analysis of the total flux on each road as well as the flux leaving the system and the behavior of the total number of congested roads
Resumo:
Following the study of Andrade et al. (2009) on regular square lattices, here we investigate the problem of optimal path cracks (OPC) in Complex Networks. In this problem we associate to each site a determined energy. The optimum path is defined as the one among all possible paths that crosses the system which has the minimum cost, namely the sum of the energies along the path. Once the optimum path is determined, at each step, one blocks its site with highest energy, and then a new optimal path is calculated. This procedure is repeated until there is a set of blocked sites forming a macroscopic fracture which connects the opposite sides of the system. The method is applied to a lattice of size L and the density of removed sites is computed. As observed in the work by Andrade et al. (2009), the fractured system studied here also presents different behaviors depending on the level of disorder, namely weak, moderated and strong disorder intensities. In the regime of weak and moderated disorder, while the density of removed sites in the system does not depend of the size L in the case of regular lattices, in the regime of high disorder the density becomes substantially dependent on L. We did the same type of study for Complex Networks. In this case, each new site is connected with m previous ones. As in the previous work, we observe that the density of removed sites presents a similar behavior. Moreover, a new result is obtained, i.e., we analyze the dependency of the disorder with the attachment parameter m
Resumo:
Currently the interest in large-scale systems with a high degree of complexity has been much discussed in the scientific community in various areas of knowledge. As an example, the Internet, protein interaction, collaboration of film actors, among others. To better understand the behavior of interconnected systems, several models in the area of complex networks have been proposed. Barabási and Albert proposed a model in which the connection between the constituents of the system could dynamically and which favors older sites, reproducing a characteristic behavior in some real systems: connectivity distribution of scale invariant. However, this model neglects two factors, among others, observed in real systems: homophily and metrics. Given the importance of these two terms in the global behavior of networks, we propose in this dissertation study a dynamic model of preferential binding to three essential factors that are responsible for competition for links: (i) connectivity (the more connected sites are privileged in the choice of links) (ii) homophily (similar connections between sites are more attractive), (iii) metric (the link is favored by the proximity of the sites). Within this proposal, we analyze the behavior of the distribution of connectivity and dynamic evolution of the network are affected by the metric by A parameter that controls the importance of distance in the preferential binding) and homophily by (characteristic intrinsic site). We realized that the increased importance as the distance in the preferred connection, the connections between sites and become local connectivity distribution is characterized by a typical range. In parallel, we adjust the curves of connectivity distribution, for different values of A, the equation P(k) = P0e
Resumo:
This work aimed to develop a suitable magnetic system for administration by the oral route. In addition to that, it was intended to review the current uses of magnetic systems and the safety related to magnetic field exposure. Methods: Coprecipitation and emulsification/crosslinking were carried out in order to synthesize magnetite particles and to coat them, respectively. Results: According to literature review, it was found that magnetic particles present several properties such as magnetophoresis in magnetic field gradient, production of a surrounding magnetic field, and heat generation in alternated magnetic field. When the human organism is exposed to magnetic fields, several interaction mechanisms come into play. However, biological tissues present low magnetic susceptibility. As a result, the effects are not so remarkable. Concerning the development of a magnetic system for oral route, uncoated magnetite particles did undergo significant dissolution at gastric pH. On the other hand, such process was inhibited in the xylan-coated particles. Conclusions: Due to their different properties, magnetic systems have been widely used in biosciences. However, the consequent increased human exposure to magnetic fields has been considered relatively safe. Concerning the experimental work, it was developed a polymer-coated magnetic system. It may be very promising for administration by the oral route for therapy and diagnostic applications as dissolution at gastric pH hardly took place
Desenvolvimento de sistemas magnéticos com potencialidades terapêuticas para vetorização de fármacos
Resumo:
Magnetic targeting is being investigated as a means of local delivery of drugs, combining precision, minimal surgical intervention, and satisfactory concentration of the drug in the target region. In view of these advantages, it is a promising strategy for improving the pharmacological response. Magnetic particles are attracted by a magnetic field gradient, and drugs bound to them can be driven to their site of action by means of the selective application of magnetic field on the desired area. Helicobacter pylori is the commonest chronic bacterial infection. The treatment of choice has commonly been based upon a triple therapy combining two antibiotics and an anti-secretory agent. Furthermore, an extended-release profile is of utmost importance for these formulations. The aim of this work was to develop a magnetic system containing the antibiotic amoxicillin for oral magnetic drug targeting. First, magnetic particles were produced by coprecipitation of iron salts in alkaline medium. The second step was coating the particles and amoxicillin with Eudragit® S-100 by spray-drying technique. The system obtained demonstrated through the characterization studies carried out a possible oral drug delivery system, consisting in magnetite microparticles and amoxicillin, coated with a polymer acid resistant. This system can be used to deliver drugs to the stomach for treatment of infections in this organ. Another important finding in this work is that it opens new prospects to coat magnetic microparticles by the technique of spray-drying.
Resumo:
A serious problem that affects an oil refinery s processing units is the deposition of solid particles or the fouling on the equipments. These residues are naturally present on the oil or are by-products of chemical reactions during its transport. A fouled heat exchanger loses its capacity to adequately heat the oil, needing to be shut down periodically for cleaning. Previous knowledge of the best period to shut down the exchanger may improve the energetic and production efficiency of the plant. In this work we develop a system to predict the fouling on a heat exchanger from the Potiguar Clara Camarão Refinery, based on data collected in a partnership with Petrobras. Recurrent Neural Networks are used to predict the heat exchanger s flow in future time. This variable is the main indicator of fouling, because its value decreases gradually as the deposits on the tubes reduce their diameter. The prediction could be used to tell when the flow will have decreased under an acceptable value, indicating when the exchanger shutdown for cleaning will be needed
Resumo:
In this thesis, we address two issues of broad conceptual and practical relevance in the study of complex networks. The first is associated with the topological characterization of networks while the second relates to dynamical processes that occur on top of them. Regarding the first line of study, we initially designed a model for networks growth where preferential attachment includes: (i) connectivity and (ii) homophily (links between sites with similar characteristics are more likely). From this, we observe that the competition between these two aspects leads to a heterogeneous pattern of connections with the topological properties of the network showing quite interesting results. In particular, we emphasize that there is a region where the characteristics of sites play an important role not only for the rate at which they get links, but also for the number of connections which occur between sites with similar and dissimilar characteristics. Finally, we investigate the spread of epidemics on the network topology developed, whereas its dissemination follows the rules of the contact process. Using Monte Carlo simulations, we show that the competition between states (infected/healthy) sites, induces a transition between an active phase (presence of sick) and an inactive (no sick). In this context, we estimate the critical point of the transition phase through the cumulant Binder and ratio between moments of the order parameter. Then, using finite size scaling analysis, we determine the critical exponents associated with this transition
Resumo:
In this work we analyse the implications of using a power law distribution of vertice's quality in the growth dynamics of a network studied by Bianconi anel Barabási. In particular, we start studying the random networks which characterize or are related to some real situations, for instance the tide movement. In this context of complex networks, we investigate several real networks, as well as we define some important concepts in the network studies. Furthermore, we present the first scale-free network model, which was proposed by Barabási et al., and a modified model studied by Bianconi and Barabási, where now the preferential attachment incorporates the different ability (fitness) of the nodes to compete for links. At the end, our results, discussions and conclusions are presented
Resumo:
Helicobacter pylori is the main cause of gastritis, gastroduodenal ulcer disease and gastric cancer. The most recommended treatment for eradication of this bacteria often leads to side effects and patient poor compliance, which induce treatment failure. Magnetic drug targeting is a very efficient method that overcomes these drawbacks through association of the drug with a magnetic compound. Such approach may allow such systems to be placed slowed down to a specific target area by an external magnetic field. This work reports a study of the synthesis and characterization of polymeric magnetic particles loaded with the currently used antimicrobial agents for the treatment of Helicobacter pylori infections, aiming the production of magnetic drug delivery system by oral route. Optical microscopy, scanning electron microscopy, transmission electron microscopy, x-ray powder diffraction, nitrogen adsorption/desorption isotherms and vibrating sample magnetometry revealed that the magnetite particles, produced by the co-precipitation method, consisted of a large number of aggregated nanometer-size crystallites (about 6 nm), creating superparamagnetic micrometer with high magnetic susceptibility particles with an average diameter of 6.8 ± 0.2 μm. Also, the polymeric magnetic particles produced by spray drying had a core-shell structure based on magnetite microparticles, amoxicillin and clarithromycin and coated with Eudragit® S100. The system presented an average diameter of 14.2 ± 0.2 μm. The amount of magnetite present in the system may be tailored by suitably controlling the suspension used to feed the spray dryer. In the present work it was 2.9% (w/w). The magnetic system produced may prove to be very promising for eradication of Helicobacter pylori infections
Resumo:
In this work a study of social networks based on analysis of family names is presented. A basic approach to the mathematical formalism of graphs is developed and then main theoretical models for complex networks are presented aiming to support the analysis of surnames networks models. These, in turn, are worked so as to be drawn leading quantities, such as aggregation coefficient, minimum average path length and connectivity distribution. Based on these quantities, it can be stated that surnames networks are an example of complex network, showing important features such as preferential attachment and small-world character
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.