117 resultados para Probabilidade geometrica
Resumo:
In this work, the study of some complex systems is done with use of two distinct procedures. In the first part, we have studied the usage of Wavelet transform on analysis and characterization of (multi)fractal time series. We have test the reliability of Wavelet Transform Modulus Maxima method (WTMM) in respect to the multifractal formalism, trough the calculation of the singularity spectrum of time series whose fractality is well known a priori. Next, we have use the Wavelet Transform Modulus Maxima method to study the fractality of lungs crackles sounds, a biological time series. Since the crackles sounds are due to the opening of a pulmonary airway bronchi, bronchioles and alveoli which was initially closed, we can get information on the phenomenon of the airway opening cascade of the whole lung. Once this phenomenon is associated with the pulmonar tree architecture, which displays fractal geometry, the analysis and fractal characterization of this noise may provide us with important parameters for comparison between healthy lungs and those affected by disorders that affect the geometry of the tree lung, such as the obstructive and parenchymal degenerative diseases, which occurs, for example, in pulmonary emphysema. In the second part, we study a site percolation model for square lattices, where the percolating cluster grows governed by a control rule, corresponding to a method of automatic search. In this model of percolation, which have characteristics of self-organized criticality, the method does not use the automated search on Leaths algorithm. It uses the following control rule: pt+1 = pt + k(Rc − Rt), where p is the probability of percolation, k is a kinetic parameter where 0 < k < 1 and R is the fraction of percolating finite square lattices with side L, LxL. This rule provides a time series corresponding to the dynamical evolution of the system, in particular the likelihood of percolation p. We proceed an analysis of scaling of the signal obtained in this way. The model used here enables the study of the automatic search method used for site percolation in square lattices, evaluating the dynamics of their parameters when the system goes to the critical point. It shows that the scaling of , the time elapsed until the system reaches the critical point, and tcor, the time required for the system loses its correlations, are both inversely proportional to k, the kinetic parameter of the control rule. We verify yet that the system has two different time scales after: one in which the system shows noise of type 1 f , indicating to be strongly correlated. Another in which it shows white noise, indicating that the correlation is lost. For large intervals of time the dynamics of the system shows ergodicity
Resumo:
Complex systems have stimulated much interest in the scientific community in the last twenty years. Examples this area are the Domany-Kinzel cellular automaton and Contact Process that are studied in the first chapter this tesis. We determine the critical behavior of these systems using the spontaneous-search method and short-time dynamics (STD). Ours results confirm that the DKCA e CP belong to universality class of Directed Percolation. In the second chapter, we study the particle difusion in two models of stochastic sandpiles. We characterize the difusion through diffusion constant D, definite through in the relation h(x)2i = 2Dt. The results of our simulations, using finite size scalling and STD, show that the diffusion constant can be used to study critical properties. Both models belong to universality class of Conserved Directed Percolation. We also study that the mean-square particle displacement in time, and characterize its dependence on the initial configuration and particle density. In the third chapter, we introduce a computacional model, called Geographic Percolation, to study watersheds, fractals with aplications in various areas of science. In this model, sites of a network are assigned values between 0 and 1 following a given probability distribution, we order this values, keeping always its localization, and search pk site that percolate network. Once we find this site, we remove it from the network, and search for the next that has the network to percole newly. We repeat these steps until the complete occupation of the network. We study the model in 2 and 3 dimension, and compare the bidimensional case with networks form at start real data (Alps e Himalayas)
Resumo:
In this work we study a new risk model for a firm which is sensitive to its credit quality, proposed by Yang(2003): Are obtained recursive equations for finite time ruin probability and distribution of ruin time and Volterra type integral equation systems for ultimate ruin probability, severity of ruin and distribution of surplus before and after ruin
Resumo:
The on-line processes control for attributes consists of inspecting a single item at every m produced ones. If the examined item is conforming, the production continues; otherwise, the process stops for adjustment. However, in many practical situations, the interest consist of monitoring the number of non-conformities among the examined items. In this case, if the number of non-conformities is higher than an upper control limit, the process needs to be stopped and some adjustment is required. The contribution of this paper is to propose a control system for the number of nonconforming of the inspected item. Employing properties of an ergodic Markov chain, an expression for the expected cost per item of the control system was obtained and it will be minimized by two parameters: the sampling interval and the upper limit control of the non-conformities of the examined item. Numerical examples illustrate the proposed procedure
Resumo:
Este trabalho tem como objetivo o estudo do comportamento assintótico da estatística de Pearson (1900), que é o aparato teórico do conhecido teste qui-quadrado ou teste x2 como também é usualmente denotado. Inicialmente estudamos o comportamento da distribuição da estatística qui-quadrado de Pearson (1900) numa amostra {X1, X2,...,Xn} quando n → ∞ e pi = pi0 , 8n. Em seguida detalhamos os argumentos usados em Billingley (1960), os quais demonstram a convergência em distribuição de uma estatística, semelhante a de Pearson, baseada em uma amostra de uma cadeia de Markov, estacionária, ergódica e com espaço de estados finitos S
Resumo:
In this work we study the Hidden Markov Models with finite as well as general state space. In the finite case, the forward and backward algorithms are considered and the probability of a given observed sequence is computed. Next, we use the EM algorithm to estimate the model parameters. In the general case, the kernel estimators are used and to built a sequence of estimators that converge in L1-norm to the density function of the observable process
Resumo:
In this work we studied the consistency for a class of kernel estimates of f f (.) in the Markov chains with general state space E C Rd case. This study is divided into two parts: In the first one f (.) is a stationary density of the chain, and in the second one f (x) v (dx) is the limit distribution of a geometrically ergodic chain
Resumo:
Os Algoritmos Genético (AG) e o Simulated Annealing (SA) são algoritmos construídos para encontrar máximo ou mínimo de uma função que representa alguma característica do processo que está sendo modelado. Esses algoritmos possuem mecanismos que os fazem escapar de ótimos locais, entretanto, a evolução desses algoritmos no tempo se dá de forma completamente diferente. O SA no seu processo de busca trabalha com apenas um ponto, gerando a partir deste sempre um nova solução que é testada e que pode ser aceita ou não, já o AG trabalha com um conjunto de pontos, chamado população, da qual gera outra população que sempre é aceita. Em comum com esses dois algoritmos temos que a forma como o próximo ponto ou a próxima população é gerada obedece propriedades estocásticas. Nesse trabalho mostramos que a teoria matemática que descreve a evolução destes algoritmos é a teoria das cadeias de Markov. O AG é descrito por uma cadeia de Markov homogênea enquanto que o SA é descrito por uma cadeia de Markov não-homogênea, por fim serão feitos alguns exemplos computacionais comparando o desempenho desses dois algoritmos
Resumo:
In this work, we present a risk theory application in the following scenario: In each period of time we have a change in the capital of the ensurance company and the outcome of a two-state Markov chain stabilishs if the company pays a benece it heat to one of its policyholders or it receives a Hightimes c > 0 paid by someone buying a new policy. At the end we will determine once again by the recursive equation for expectation the time ruin for this company
Resumo:
In Percolation Theory, functions like the probability that a given site belongs to the infinite cluster, average size of clusters, etc. are described through power laws and critical exponents. This dissertation uses a method called Finite Size Scaling to provide a estimative of those exponents. The dissertation is divided in four parts. The first one briefly presents the main results for Site Percolation Theory for d = 2 dimension. Besides, some important quantities for the determination of the critical exponents and for the phase transistions understanding are defined. The second shows an introduction to the fractal concept, dimension and classification. Concluded the base of our study, in the third part the Scale Theory is mentioned, wich relates critical exponents and the quantities described in Chapter 2. In the last part, through the Finite Size Scaling method, we determine the critical exponents fi and. Based on them, we used the previous Chapter scale relations in order to determine the remaining critical exponents
Resumo:
We considered prediction techniques based on models of accelerated failure time with random e ects for correlated survival data. Besides the bayesian approach through empirical Bayes estimator, we also discussed about the use of a classical predictor, the Empirical Best Linear Unbiased Predictor (EBLUP). In order to illustrate the use of these predictors, we considered applications on a real data set coming from the oil industry. More speci - cally, the data set involves the mean time between failure of petroleum-well equipments of the Bacia Potiguar. The goal of this study is to predict the risk/probability of failure in order to help a preventive maintenance program. The results show that both methods are suitable to predict future failures, providing good decisions in relation to employment and economy of resources for preventive maintenance.
Resumo:
In this work, we studied the strong consistency for a class of estimates for a transition density of a Markov chain with general state space E ⊂ Rd. The strong ergodicity of the estimates for the density transition is obtained from the strong consistency of the kernel estimates for both the marginal density p(:) of the chain and the joint density q(., .). In this work the Markov chain is supposed to be homogeneous, uniformly ergodic and possessing a stationary density p(.,.)
Resumo:
In production lines, the entire process is bound to unexpected happenings which may cost losing the production quality. Thus, it means losses to the manufacturer. Identify such causes and remove them is the task of the processing management. The on-line control system consists of periodic inspection of every month produced item. Once any of those items is quali ed as not t, it is admitted that a change in the fraction of the items occurred, and then the process is stopped for adjustments. This work is an extension of Quinino & Ho (2010) and has as objective main to make the monitoramento in a process through the control on-line of quality for the number of non-conformities about the inspected item. The strategy of decision to verify if the process is under control, is directly associated to the limits of the graphic control of non-conformities of the process. A policy of preventive adjustments is incorporated in order to enlarge the conforming fraction of the process. With the help of the R software, a sensibility analysis of the proposed model is done showing in which situations it is most interesting to execute the preventive adjustment
Resumo:
In survival analysis, the response is usually the time until the occurrence of an event of interest, called failure time. The main characteristic of survival data is the presence of censoring which is a partial observation of response. Associated with this information, some models occupy an important position by properly fit several practical situations, among which we can mention the Weibull model. Marshall-Olkin extended form distributions other a basic generalization that enables greater exibility in adjusting lifetime data. This paper presents a simulation study that compares the gradient test and the likelihood ratio test using the Marshall-Olkin extended form Weibull distribution. As a result, there is only a small advantage for the likelihood ratio test
Resumo:
In this work we study the accelerated failure-time generalized Gamma regression models with a unified approach. The models attempt to estimate simultaneously the effects of covariates on the acceleration/deceleration of the timing of a given event and the surviving fraction. The method is implemented in the free statistical software R. Finally the model is applied to a real dataset referring to the time until the return of the disease in patients diagnosed with breast cancer