92 resultados para Bandas callejeras
Resumo:
In this paper we investigate the spectra of band structures and transmittance in magnonic quasicrystals that exhibit the so-called deterministic disorders, specifically, magnetic multilayer systems, which are built obeying to the generalized Fibonacci (only golden mean (GM), silver mean (SM), bronze mean (BM), copper mean (CM) and nickel mean (NM) cases) and k-component Fibonacci substitutional sequences. The theoretical model is based on the Heisenberg Hamiltonian in the exchange regime, together with the powerful transfer matrix method, and taking into account the RPA approximation. The magnetic materials considered are simple cubic ferromagnets. Our main interest in this study is to investigate the effects of quasiperiodicity on the physical properties of the systems mentioned by analyzing the behavior of spin wave propagation through the dispersion and transmission spectra of these structures. Among of these results we detach: (i) the fragmentation of the bulk bands, which in the limit of high generations, become a Cantor set, and the presence of the mig-gap frequency in the spin waves transmission, for generalized Fibonacci sequence, and (ii) the strong dependence of the magnonic band gap with respect to the parameters k, which determines the amount of different magnetic materials are present in quasicrystal, and n, which is the generation number of the sequence k-component Fibonacci. In this last case, we have verified that the system presents a magnonic band gap, whose width and frequency region can be controlled by varying k and n. In the exchange regime, the spin waves propagate with frequency of the order of a few tens of terahertz (THz). Therefore, from a experimental and technological point of view, the magnonic quasicrystals can be used as carriers or processors of informations, and the magnon (the quantum spin wave) is responsible for this transport and processing
Resumo:
The interest in the systematic analysis of astronomical time series data, as well as development in astronomical instrumentation and automation over the past two decades has given rise to several questions of how to analyze and synthesize the growing amount of data. These data have led to many discoveries in the areas of modern astronomy asteroseismology, exoplanets and stellar evolution. However, treatment methods and data analysis have failed to follow the development of the instruments themselves, although much effort has been done. In present thesis, we propose new methods of data analysis and two catalogs of the variable stars that allowed the study of rotational modulation and stellar variability. Were analyzed the photometric databases fromtwo distinctmissions: CoRoT (Convection Rotation and planetary Transits) and WFCAM (Wide Field Camera). Furthermore the present work describes several methods for the analysis of photometric data besides propose and refine selection techniques of data using indices of variability. Preliminary results show that variability indices have an efficiency greater than the indices most often used in the literature. An efficient selection of variable stars is essential to improve the efficiency of all subsequent steps. Fromthese analyses were obtained two catalogs; first, fromtheWFCAMdatabase we achieve a catalog with 319 variable stars observed in the photometric bands Y ZJHK. These stars show periods ranging between ∼ 0, 2 to ∼ 560 days whose the variability signatures present RR-Lyrae, Cepheids , LPVs, cataclysmic variables, among many others. Second, from the CoRoT database we selected 4, 206 stars with typical signatures of rotationalmodulation, using a supervised process. These stars show periods ranging between ∼ 0, 33 to ∼ 92 days, amplitude variability between ∼ 0, 001 to ∼ 0, 5 mag, color index (J - H) between ∼ 0, 0 to ∼ 1, 4 mag and spectral type CoRoT FGKM. The WFCAM variable stars catalog is being used to compose a database of light curves to be used as template in an automatic classifier for variable stars observed by the project VVV (Visible and Infrared Survey Telescope for Astronomy) moreover it are a fundamental start point to study different scientific cases. For example, a set of 12 young stars who are in a star formation region and the study of RR Lyrae-whose properties are not well established in the infrared. Based on CoRoT results we were able to show, for the first time, the rotational modulation evolution for an wide homogeneous sample of field stars. The results are inagreement with those expected by the stellar evolution theory. Furthermore, we identified 4 solar-type stars ( with color indices, spectral type, luminosity class and rotation period close to the Sun) besides 400 M-giant stars that we have a special interest to forthcoming studies. From the solar-type stars we can describe the future and past of the Sun while properties of M-stars are not well known. Our results allow concluded that there is a high dependence of the color-period diagram with the reddening in which increase the uncertainties of the age-period realized by previous works using CoRoT data. This thesis provides a large data-set for different scientific works, such as; magnetic activity, cataclysmic variables, brown dwarfs, RR-Lyrae, solar analogous, giant stars, among others. For instance, these data will allow us to study the relationship of magnetic activitywith stellar evolution. Besides these aspects, this thesis presents an improved classification for a significant number of stars in the CoRoT database and introduces a new set of tools that can be used to improve the entire process of the photometric databases analysis
Resumo:
In this work we present a study of structural, electronic and optical properties, at ambient conditions, of CaSiO3, CaGeO3 and CaSnO3 crystals, all of them a member of Ca-perovskite class. To each one, we have performed density functional theory ab initio calculations within LDA and GGA approximations of the structural parameters, geometry optimization, unit cell volume, density, angles and interatomic length, band structure, carriers effective masses, total and partial density of states, dielectric function, refractive index, optical absorption, reflectivity, optical conductivity and loss function. A result comparative procedure was done between LDA and GGA calculations, a exception to CaSiO3 where only LDA calculation was performed, due high computational cost that its low symmetry crystalline structure imposed. The Ca-perovskite bibliography have shown the absence of electronic structure calculations about this materials, justifying the present work
Resumo:
The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal
Resumo:
In this work we present a theoretical study about the properties of magnetic polaritons in superlattices arranged in a periodic and quasiperiodic fashíons. In the periodic superlattice, in order to describe the behavior of the bulk and surface modes an effective medium approach, was used that simplify enormously the algebra involved. The quasi-periodic superlattice was described by a suitable theoretical model based on a transfer-matrix treatment, to derive the polariton's dispersion relation, using Maxwell's equations (including effect of retardation). Here, we find a fractal spectra characterized by a power law for the distribution of the energy bandwidths. The localization and scaling behavior of the quasiperiodic structure were studied for a geometry where the wave vector and the external applied magnetic field are in the same plane (Voigt geometry). Numerical results are presented for the ferromagnet Fe and for the metamagnets FeBr2 and FeCl2
Resumo:
Cytogenetic studies have been revealing a great diversity not detected, until then, in several families of fishes. Many of these groups, especially those that exhibit great diversity, like Perciformes and Siluriformes, possess species with difficult morphologic characterization, called cryptic species, commonly detected through karyotypic analyses, which reveals outstanding interespecific variations with relationship to the number and its chromosomal structures. Thus, the present work intends to contribute for the cytogenetic knowledge of marine and brackish fish species, because they peculiar life habits and by lack of cytogenetic data of your genetic aspects. Therefore, cytogenetic studies were developed in a species of Apogonidae (Perciformes), two species of sea catfishes of the family Ariidae (Siluriformes) and brackish fish Paurachenipterus galeatus (Siluriformes, Auchenipteridae), through C banding, Ag-NOR, use of base-specific flourochromes (DAPI and CMA3), as well as FISH (Fluorescent in situ hybridization) using ribosomal DNA probes 5S and 18S. The present results contribute to a better understanding of the processes of differentiation patterns and chromosome evolution in these groups. The use of other approaches (the morphology and molecular tools) will allow a larger understanding of the genetic and biological diversity of the Brazilian ichthyofauna.
Resumo:
Mutations on TP53 gene are common in human cancer but not in cervical cancer where they are rarely found and the inactivation and degradation of p53 protein are attributed to the action of E6 viral oncogene from high risk human papillomavirus (HPV). Analysis of cervical cancer cell lines suggests that HPV negative samples shows mutation on TP53, but clinical approaches didn t confirmed this hypothesis. However, in most TP53 mutations studies on cervical cancer, only the exons 5 to 8 were analyzed. Approximately 90% of mutations described are on this region. Recent studies on several cancer suggests that mutation frequency in the other exons must be considered. The aim of this work was to verify whether mutations on coding and non-coding regions occur in cancer tissue from cervical cancer in patients from Rio Grande do Norte using Denaturing Gradient Gel Electrophoresis (DGGE) as screening tool. Exons 8 to 11 were analyzed including some introns from 80 tumor samples and 8 peripheral blood samples from healthy women. DNA were submitted to PCR using primers with GC clamp on the end of one of them. The results were observed for each region after DGGE and silver staining. It was observed no amplified fragment with different migration profile from those obtained from DNA of peripheral blood. These results agree with those from literature where TP53 mutations in cervical cancer have been described in a very low frequency
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Films of chitosan with trivalent lanthanides ions Eu3+ and Tb3+ were respectively prepared in the ratio of 3:1 m/m (chitosan: lanthanide) and 6:1 m/m (chitosan: lanthanide). There were no formations of films in a ratio of 1:1 m/m (chitosan: lanthanides). The films of chitosan with the Tb3+ ion have the same transparent appearance than the pure chitosan films. The film of chitosan with Eu3+ ion has a muddy appearance. These films present good resistance to tear. The appearance of the compounds prepared in ratio 1:1m/m is a white powder. The films and compounds of chitosan were characterized by Elementary Analysis (CHN), Thermal Analysis (TG/DTG) and Spectroscopy of Luminescence. The CHN analysis was made only for compounds prepared in ratio 1:1m/m, suggesting that these compounds possess the formula QUILn.6H2O, where QUI = Chitosan and Ln = Lanthanide. The results of the curves TG/DTG indicated that there are strong interactions between Eu3+ or Tb3+ and chitosan, causing a lesser lost of mass in the films. The luminescence analysis showed that the films of chitosan with the ions Eu3+ and Tb3+ present emissions in the region of the visible one, with bands of the chitosan and of the Eu3+ ion. The luminescence analysis of the compounds of chitosan with the Eu3+ and Tb3+ ions suggest that the chitosan does not transfer into energy to the ions lanthanides, however the chemical neighborhood around of the ion lanthanides breaks the selection rules and, conseqüently the 4f-4f transitions of the lanthanide ions are observed
Resumo:
In this work were synthesized and studied the spectroscopic and electrochemical characteristics of the coordination compounds trans-[Co (cyclam)Cl2]Cl, trans- Na[Co(cyclam)(tios)2], trans-[Co(en)2Cl2]Cl and trans-Na[Co(en)2(tios)2], where tios = thiosulfate and en = ethylenediamine. The compounds were characterized by: Elemental Analysis (CHN), Absorption Spectroscopy in the Infrared (IR), Uv-Visible Absorption Spectroscopy, Luminescence Spectroscopy and Electrochemistry (cyclic voltammetry). Elemental Analysis (CHN) suggests the following structures for the complex: trans- [Co(cyclam)Cl2]Cl.6H2O and trans-Na[Co(cyclam)(tios)2].7H2O. The electrochemical analysis, when compared the cathodic potential (Ec) processes of the complexes trans- [Co(cyclam)Cl2]Cl and trans-[Co(en)2Cl2]Cl, indicated a more negative value (-655 mV) for the second complex, suggesting a greater electron donation to the metal center in this complex which can be attributed to a greater proximity of the nitrogen atoms of ethylenediamine in relation to metal-nitrogen cyclam. Due to the effect of setting macrocyclic ring to the metal center, the metal-nitrogen bound in the cyclam are not as close as the ethylenediamine, this fact became these two ligands different. Similar behavior is also observed for complexes in which the chlorides are replaced by thiosulfate ligand, trans-Na[Co(en)2(tios)2] (-640 mV) and trans-Na[Co(cyclam)(tios)2] (-376 mV). In absorption spectroscopy in the UV-visible, there is the band of charge transfer LMCT (ligand p d* the metal) in the trans-Na[Co(cyclam)(tios)2] (350 nm, p tios d* Co3+) and in the trans-Na[Co(en)2(tios)2] (333 nm, p tios d* Co3+), that present higher wavelength compared to complex precursor trans- [Co(cyclam)Cl2]Cl (318 nm, pCl d* Co3+), indicating a facility of electron density transfer for the metal in the complex with the thiosulfate ligand. The infrared analysis showed the coordination of the thiosulfate ligand to the metal by bands in the region (620-635 cm-1), features that prove the monodentate coordination via the sulfur atom. The νN-H bands of the complexes with ethylenediamine are (3283 and 3267 cm-1) and the complex with cyclam bands are (3213 and 3133 cm-1). The luminescence spectrum of the trans-Na[Co(cyclam)(tios)2] present charge transfer band at 397 nm and bands dd at 438, 450, 467, 481 and 492 nm.
Resumo:
Hybrid systems formed from polymers and transition metals have now their physical and chemical properties extensively investigated for use in electronic devices. In this work, Titanium Dioxide (TiO2) from the precursor of titanium tetrabutoxide and the composite system Poly(Ethylene Glycol)-Titanium Dioxide (TiO2-PEG) were synthesized by sol-gel method. The PEG as acquired and TiO2 and composites powders were analyzed by X-Ray Diffraction (XRD), Spectroscopy in the Infrared region with Fourier transform (IRFT), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS). In the XRD analysis were observed in the TiO2 crystal faces of one of its polymorphs - anatase phase, crystal planes in Poly (Ethylene Glycol) with considerable intensity and in the composite systems the mixture of crystal faces of their precursors isolated and reduction of crystallinity. The TG / DTG suggested increasing the thermal instability of PEG in the composite powders as TiO2 is incorporated into the system. Spectral analysis presented in the infrared overlapping bands for the polymer and metal oxide, reducing the intensity of symmetric stretching of ligand groups in the main chain polymer and angular deformations; were observed using SEM micrographs of the morphological changes suffered by composite systems with the variation of the oxide concentration. Analyses by impedance spectroscopy indicated that the increased conductivity in composite occurs in line with the addition of the metal oxide concentration in the composite system
Resumo:
O recente interesse em se obter materiais nanoporosos funcionalizados para aplicações como calisadores heterogêneos e adsorção de CO2, tem aumentado no meio industrial e cientifico. Nesta última aplicação, a introdução de grupos aminas, como os presentes em quitosana, em materiais nanoporosos do tipo SBA-15 para gerar interações específicas com o CO2 tem ganhado importância. Assim, neste trabalho foram realizadas a síntese do SBA-15 e posterior impregnação da CS no suporte mesoporoso através do método de impregnação por via úmida. Os materiais obtidos foram caracterizados por meio DRX, TG, DSC, MEV, FTIR e adsorção/dessorção de N2. Os resultados de DRX indicaram que a estrutura ordenada do suporte SBA-15 foi preservada após a impregnação e os cálculos mostraram que o diâmetro médio do poro e/ou a espessura média da parede (wt) foram alterados devido a introdução da quitosana nas amostras funcionalizadas. As curvas de TG e de DSC,corroboraram com os dados de DRX, indicando a presença da quitosana na estrutura mesoporosa do SBA-15, assim como as micrografias das amostras funcionalizadas, que possibilitou visualizar o estado de agregação do material obtido. As bandas características de absorção da CS na região IV foram identificadas e interpretadas nas amostras funcionalizadas confirmando as outras caracterizações. Foi visto também que a área superficial diminuiu nas amostras funcionalizadas, indicando a sucessiva incorporação do polímero no suporte mesoporoso. A energia de ativação do processo de degradação térmica da quitosana impregnada no suporte foi determinada por meio do método de cinética livre de Viazovkin e pelo método de Ozawa-Flay-Wall com os resultados indicando que o aumento da quitosana diminui em aproximadamente 10% a energia de ativação para sua degradação.
Resumo:
The recent interest in obtaining functionalized nanoporous materials for applications such as heterogeneous catalysts and adsorption of CO2 has increased today. In the latter application, the introduction of amino groups such as present in the chitosan (CS), in the nanoporous materials like SBA-15 to generate specific interactions with CO2 has gained importance. In this work were performed to hydrothermal synthesis of SBA-15 and subsequent impregnation of the CS in the support mesoporous by the method of the wet impregnation. The materials were characterized by TG/DTG, DSC, XRD, SEM, FTIR and adsorption / desorption of N2. The XRD showed that the ordered structure of the support SBA-15 was preserved after the impregnation and calculations have shown that the average pore diameter (Dp) and / or the average wall thickness (wt) have been changed due to introduction of the CS in the samples functionalized. The curves of TG and DSC data corroborates the XRD, indicating the presence of CS in the nanoporous structure of SBA-15, as well as micrographs of samples, which allowed the display state of aggregation of the material obtained. The characteristics of bands absorption in the region of the CS in the FTIR were identified and interpreted in the samples functionalized, confirming the further characterization. Measurements showed that the BET surface area decreases in the functionalized samples, indicating the successive incorporation of the polymer in the nanoporous support. The activation energy apparent (Ea) for the process of thermal degradation of CS in the impregnated support was determined by the methods of kinetic freedom Vyazovkin and Ozawa-Flynn-Wall with the results indicating that the sample functionalized CS/SBA-15 2,5 % was decrease of the Ea in their degradation of about 10% compared to 1,0 % CS/SBA-15 sample
Resumo:
In recent years, studies about the physicochemical properties of mixed oxides, call attention of the scientific community, properties like as piezoelectricity, photoluminescence, or applications as catalysts, arise in these compounds, when their chemical compositions are modified, in this context some routes are employed in the synthesis of these materials, among which can be cited these methods: ceramic, combustion, co-precipitation, Pechini or polymeric precursor method, hydrothermal, sol-gel; these routes are divided into traditional routes or chemical routes. In this work were synthesized oxides with variable composition, from the thermal decomposition of titanium, cobalt, nickel and praseodymium nitrilotriacetates. The nitrilotriacetates were characterized by IR Spectroscopy (FTIR), Thermogravimetric (TG/ DTG) and Differential Scanning Calorimetry (DSC), while oxides have been characterized by X-ray diffraction (XRD), Spectrofluorimetry and IR Spectroscopy (FTIR). From FTIR data, it was demonstrated that the displacement of the band corresponding to the carboxylate group (νCOOH) at 1712 cm-1, present in nitrilotriacetic acid (H3NTA), for 1680-1545 cm-1, these stretches are characteristics of coordinated nitrilotriacetates, By thermal analysis (TG/DTG /DSC), it was suggested, that in an oxidizing atmosphere (air) oxides are obtained at lower temperatures than in an inert atmosphere N2(g). By results from X-ray Diffraction (XRD), it was determinated that the oxides are crystalline and the predominant phases obtained are summarized titanate phases rutile and ilmenite. By fluorimetry was observed that the intensity of emission bands are directly proportional to the concentration of ions Ni2+, Co2+ and Pr3+, and IR spectroscopy (FTIR) from oxides, demonstrated the disappearance of characteristic bands by nitrilotriacetates, determining the complete decomposition of the nitrilotriacetates in oxides
Resumo:
A new self-sustainable film was prepared through the sol-gel modified method, previously employed in our research group; sodium alginate was used as the polymer matrix, along with plasticizer glycerol, doped with titanium dioxide (TiO2) and tungsten trioxide (WO3). By varying WO3 concentration (0,8, 1,6, 2,4 and 3,2 μmol) and keeping TiO2 concentration constant (059 mmol), it was possible to study the contribution of these oxides on the obtained films morphological and electrical properties. Self-sustainable films have analyzed by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XDR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Electrochemical Impedance Spectroscopy (EIS). By the IR specters, it was possible identify the TiO2, and posteriorly WO3, addition has provided dislocation of alginate characteristics bands to smaller vibrations frequencies indicating an electrostatic interaction between the oxides and the polymer matrix. Diffractograms show predominance of the amorphous phase in the films. SEM, along with EDX, analysis revealed self-sustainable films showed surface with no cracks and relative dispersion of the oxides throughout the polymer matrix. From Impedance analysis, it was observe increasing WO3 concentration to 2,4 μmol provided a reduction of films resistive properties and consequent improvement of conductive properties