45 resultados para Derivação (álgebra)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
In this work, we present a theoretical study of the propagation of electromagnetic waves in multilayer structures called Photonic Crystals. For this purpose, we investigate the phonon-polariton band gaps in periodic and quasi-periodic (Fibonacci-type) multilayers made up of both positive and negative refractive index materials in the terahertz (THz) region. The behavior of the polaritonic band gaps as a function of the multilayer period is investigated systematically. We use a theoretical model based on the formalism of transfer matrix in order to simplify the algebra involved in obtaining the dispersion relation of phonon-polaritons (bulk and surface modes). We also present a quantitative analysis of the results, pointing out the distribution of the allowed polaritonic bandwidths for high Fibonacci generations, which gives good insight about their localization and power laws. We calculate the emittance spectrum of the electromagnetic radiation, in THZ frequency, normally and obliquely incident (s and p polarized modes) on a one-dimensional multilayer structure composed of positive and negative refractive index materials organized periodically and quasi-periodically. We model the negative refractive index material by a effective medium whose electric permittivity is characterized by a phonon-polariton frequency dependent dielectric function, while for the magnetic permeability we have a Drude like frequency-dependent function. Similarity to the one-dimensional photonic crystal, this layered effective medium, called polaritonic Crystals, allow us the control of the electromagnetic propagation, generating regions named polaritonic bandgap. The emittance spectra are determined by means of a well known theoretical model based on Kirchoff s second law, together with a transfer matrix formalism. Our results shows that the omnidirectional band gaps will appear in the THz regime, in a well defined interval, that are independent of polarization in periodic case as well as in quasiperiodic case
Resumo:
In this work we present a theoretical study about the properties of magnetic polaritons in superlattices arranged in a periodic and quasiperiodic fashíons. In the periodic superlattice, in order to describe the behavior of the bulk and surface modes an effective medium approach, was used that simplify enormously the algebra involved. The quasi-periodic superlattice was described by a suitable theoretical model based on a transfer-matrix treatment, to derive the polariton's dispersion relation, using Maxwell's equations (including effect of retardation). Here, we find a fractal spectra characterized by a power law for the distribution of the energy bandwidths. The localization and scaling behavior of the quasiperiodic structure were studied for a geometry where the wave vector and the external applied magnetic field are in the same plane (Voigt geometry). Numerical results are presented for the ferromagnet Fe and for the metamagnets FeBr2 and FeCl2
Resumo:
In this work, we present a text on the Sets Numerical using the human social needs as a tool for construction new numbers. This material is intended to present a text that reconciles the correct teaching of mathmatics and clarity needed for a good learning
Resumo:
We developed this dissertation aiming its in the process of teaching and learning of the Principle of Mathematical Induction and we set our efforts so that the students of the first year of the high school can assimilate the content having the knowledge seen in the basic education as foreknowledge. With this, we seek to awake in the student the interest on proofs, showing how much it s needed in examples that involve contents that he is already seen
Resumo:
The intervalar arithmetic well-known as arithmetic of Moore, doesn't possess the same properties of the real numbers, and for this reason, it is confronted with a problem of operative nature, when we want to solve intervalar equations as extension of real equations by the usual equality and of the intervalar arithmetic, for this not to possess the inverse addictive, as well as, the property of the distributivity of the multiplication for the sum doesn t be valid for any triplet of intervals. The lack of those properties disables the use of equacional logic, so much for the resolution of an intervalar equation using the same, as for a representation of a real equation, and still, for the algebraic verification of properties of a computational system, whose data are real numbers represented by intervals. However, with the notion of order of information and of approach on intervals, introduced by Acióly[6] in 1991, the idea of an intervalar equation appears to represent a real equation satisfactorily, since the terms of the intervalar equation carry the information about the solution of the real equation. In 1999, Santiago proposed the notion of simple equality and, later on, local equality for intervals [8] and [33]. Based on that idea, this dissertation extends Santiago's local groups for local algebras, following the idea of Σ-algebras according to (Hennessy[31], 1988) and (Santiago[7], 1995). One of the contributions of this dissertation, is the theorem 5.1.3.2 that it guarantees that, when deducing a local Σ-equation E t t in the proposed system SDedLoc(E), the interpretations of t and t' will be locally the same in any local Σ-algebra that satisfies the group of fixed equations local E, whenever t and t have meaning in A. This assures to a kind of safety between the local equacional logic and the local algebras
Resumo:
This dissertation presents a model-driven and integrated approach to variability management, customization and execution of software processes. Our approach is founded on the principles and techniques of software product lines and model-driven engineering. Model-driven engineering provides support to the specification of software processes and their transformation to workflow specifications. Software product lines techniques allows the automatic variability management of process elements and fragments. Additionally, in our approach, workflow technologies enable the process execution in workflow engines. In order to evaluate the approach feasibility, we have implemented it using existing model-driven engineering technologies. The software processes are specified using Eclipse Process Framework (EPF). The automatic variability management of software processes has been implemented as an extension of an existing product derivation tool. Finally, ATL and Acceleo transformation languages are adopted to transform EPF process to jPDL workflow language specifications in order to enable the deployment and execution of software processes in the JBoss BPM workflow engine. The approach is evaluated through the modeling and modularization of the project management discipline of the Open Unified Process (OpenUP)
Resumo:
Through the adoption of the software product line (SPL) approach, several benefits are achieved when compared to the conventional development processes that are based on creating a single software system at a time. The process of developing a SPL differs from traditional software construction, since it has two essential phases: the domain engineering - when common and variables elements of the SPL are defined and implemented; and the application engineering - when one or more applications (specific products) are derived from the reuse of artifacts created in the domain engineering. The test activity is also fundamental and aims to detect defects in the artifacts produced in SPL development. However, the characteristics of an SPL bring new challenges to this activity that must be considered. Several approaches have been recently proposed for the testing process of product lines, but they have been shown limited and have only provided general guidelines. In addition, there is also a lack of tools to support the variability management and customization of automated case tests for SPLs. In this context, this dissertation has the goal of proposing a systematic approach to software product line testing. The approach offers: (i) automated SPL test strategies to be applied in the domain and application engineering, (ii) explicit guidelines to support the implementation and reuse of automated test cases at the unit, integration and system levels in domain and application engineering; and (iii) tooling support for automating the variability management and customization of test cases. The approach is evaluated through its application in a software product line for web systems. The results of this work have shown that the proposed approach can help the developers to deal with the challenges imposed by the characteristics of SPLs during the testing process
Resumo:
In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality
Resumo:
In general, the study of quadratic functions is based on an excessive amount formulas, all content is approached without justification. Here is the quadratic function and its properties from problems involving quadratic equations and the technique of completing the square. Based on the definitions we will show that the graph of the quadratic function is the parabola and finished our studies finding that several properties of the function can be read from the simple observation of your chart. Thus, we built the whole matter justifying each step, abandoning the use of decorated formulas and valuing the reasoning
Resumo:
In this work we studied the method to solving linear equations system, presented in the book titled "The nine chapters on the mathematical art", which was written in the first century of this era. This work has the intent of showing how the mathematics history can be used to motivate the introduction of some topics in high school. Through observations of patterns which repeats itself in the presented method, we were able to introduce, in a very natural way, the concept of linear equations, linear equations system, solution of linear equations, determinants and matrices, besides the Laplacian development for determinants calculations of square matrices of order bigger than 3, then considering some of their general applications
Resumo:
Humans, as well as some animals are born gifted with the ability to perceive quantities. The needs that came from the evolution of societies and technological resources make the the optimization of such counting methods necessary. Although necessary and useful, there are a lot of diculties in the teaching of such methods.In order to broaden the range of available tools to teach Combinatorial Analysis, a owchart is presented in this work with the goal of helping the students to x the initial concepts of such subject via pratical exercises
Resumo:
This work presents a proposal for introducing the teaching of Geometry Space study attempts to demonstrate that the use of manipulatives as a teaching resource can be an alternative learning facilitator for fixing the primitive concepts of geometry, the postulates and theorems, position relationships between points, lines and planes and calculating distances. The development makes use of a sequence of activities aimed at ensuring that students can build a more systematic learning and these are divided into four steps
Resumo:
Generally, arithmetic and geometric progressions are taught separately from ane and exponential functions, only by the use of memorized formulas and without any concern of showing students how these contents are related. This paper aims at presenting a way of teaching such contents in an integrated way, starting with the definition of ane and exponential functions relating them to situations from the daily life of the students. Then, characteristics and graphics of those functions are presented and, subsequently, arithmetic and geometric progression are shown as a restriction of the ane and exponential functions. Thus, the study of the progressions is introduced based on the functions mentioned above using situations from students daily lives as examples