895 resultados para Enseñanza de la matemática
Resumo:
Resumen tomado de la publicación
Resumo:
Realizado en la Facultad de Económicas de la Universidad de Valladolid, por 2 profesores del centro, para la asignatura de Métodos Matemáticos de la Economía. El objeto del proyecto lo constituye no la asignatura sino una parte nuclear de la misma (la Optimización Matemática), que ha sido impartida a lo largo del bienio 2003/2004 por los profesores miembros del proyecto. El fin perseguido ha sido dotar al alumno de un papel activo en la tarea docente y que sea de forma interactiva en la medida de lo posible. La metodología seguida ha sido tipo feedback, mediante la que el alumno puede modificar su conocimiento de la materia mediante ensayos y errores. En la primera fase del proyecto, se ha elaborado el material necesario para poder llevar a cabo el desarrollo de la materia (esquemas teóricos, listas de problemas, etc.). La fase intermedia ha contado con material on line del que el alumno dispone y con el que puede autoevaluarse. En la fase final, el alumno puede subsanar errores o carencias mediante la orientación del profesor. Además de la posibilidad de acceder a todo el material a través de la Web de la asignatura, se ha proporcionado a los alumnos direcciones de Internet mediante las cuales acceder a bibliografía, programas y sistema de examen. La valoración ha sido muy positiva: los índices de alumnos aprobados y las encuestas docentes externas sobre idoneidad de los profesores realizadas por los estudiantes lo avalan.
Resumo:
La publicación recoge un listado de direcciones web útiles para la enseñanza y aprendizaje de las matemáticas
Resumo:
Contrastar el grado de eficacia docente que resulta de la aplicación del método didáctico de aprendizaje en pequeños grupos en la enseñanza de Matemáticas, Lengua española y Lengua inglesa. Setecientos alumnos de segundo ciclo de Educación Primaria y de Educación Secundaria Obligatoria de centros educativos de la Comunidad de Madrid. En los grupos de muestra se aplica una estrategia didáctica de aprendizaje cooperativo en equipos pequeños. Se inicia la unidad didáctica con una exposición docente y la asignación de tareas. Éstas se realizan de forma cooperativa, pues se permite la ayuda entre los miembros del grupo, que se autocontrola y evalúa. El docente observa, orienta y de forma periódica atribuye una calificación cualitativa, nominal, a los grupos, en función de sus realizaciones, basada en los resultados individuales de los alumnos. En los grupos de control se enseñan los mismos contenidos con el método de enseñanza tradicional. Se utilizaron plantillas de observación o patrones de análisis, guías de registro, la entrevista con los alumnos y la observación sistemática de los docentes. Estudio cuantitativo y cualitativo. La media en las pruebas de aprovechamiento escolar obtenidas por los alumnos de las unidades escolares que emplearon el aprendizaje cooperativo en microgrupos son superiores a las obtenidas por los alumnos con los que se empleó la enseñanza directa tradicional. Este sistema de enseñanza permite un mayor rendimiento escolar, mejora las relaciones interpersonales y la formación de hábitos prosociales.
Situación de la enseñanza de la geometría frente a las nuevas tendencias de la educación matemática.
Resumo:
En los contenidos y la metodología secundaria y ,sobre todo, en el primer ciclo, de 12 a 16 años, no se consiguen criterios que logren un consenso medianamente general porque los alumnos de enseñanza media son muy variables y hay que buscar un denominador común útil y comprensible para la mayoría. Las dificultades de la geometría en secundaria han suprimido esta casi totalmente con bases impecablemente sentadas, a partir de las cuales, todo se desarrolla lógicamente sin posibilidad de subirse de la línea general elegida. Desde este punto de vista el aprendizaje carece de importancia. Entre los 12 a 16 años el alumno debe aprender muchas y no es malo que conozca distintos métodos y distintos puntos de vista. No hay que decantarse por ninguna opción. En cualquiera de ellas se puede aprender a razonar y a ejercitar la deducción lógica. La complicación excesiva no es buena, al margen de su valor matemático.
Resumo:
Estudio acerca de lo que constituye la matemática moderna en todos los niveles y en especial en el nivel de la enseñanza media. Se hace referencia a las conclusiones elaboradas al respecto, a partir de conferencias organizadas por la Société Mathématique de Francia en colaboración con L'Association des Professeurs de Mathématiques de l'Enseignement Public en el año 1956. El problema central que ha preocupado en todas estas reuniones ha sido: cual es la matemática que debe enseñarse en la actualidad en los diversos grados y especialidades en los que interviene esta disciplina. A continuación se tratan en profundidad aspectos como el origen del problema de la enseñanza de las matemáticas, se reflexiona acerca de lo que es la matemática moderna, y se realizan las consecuentes impugnaciones o críticas a esta matemática moderna, destacando lo enormemente abstracta que resulta. Para terminar se señalan una serie de conclusiones generales.
Resumo:
Discurso del profesor Pedro Puig Adam en la XXVI Semana Pedagógica de la Federación de Amigos de la Enseñanza, sobre la necesidad de colaboración entre la enseñanza oficial y la privada, para la mejora de los métodos pedagógicos y la educación en general.
Resumo:
Los importantes cambios conceptuales habidos en la matemática y la consiguiente renovación respecto de sus contenidos y pedagogía, han sentado los fundamentos de una educación de la matemática verdaderamente lógica. Estas nuevas perspectivas se materializan en las conclusiones a las que llega el congreso internacional sobre la enseñanza de la matemática moderna, celebrado en Lyon.
Resumo:
Monográfico con el título: 'Educación matemática y tecnologías de la información'. Resumen basado en el de la publicación
Resumo:
Implicaciones de la Matemática moderna en la enseñanza, en relación con el alumno y profesor. 4 Partes: I. Fines y contenidos de la enseñanza matemática actual, revisar programas anteriores, objetivos programados y relación con otras materias. II. Metodología matemática, métodos actuales y desarrollos específicos. III. Recursos y evaluación, estado de implantación de la nueva Matemática, preparación del profesorado y papel del seminario didáctico. IV. Tratamiento estadístico de datos. Resultados sobre la adquisición de los objetivos de la taxonomía NLSMA, influencia de diversas variables (factores de éxito, Standford) en la dificultad de los problemas y estudio de la conducta del profesor, por el método Amidon-Flanders. Para modelo Standford, 5 centros de BUP (400 alumnos) más otra de 300 universitarios. Taxonomía NLSMA, varios centros (470 alumnos). Método Flanders: 6 profesores. Taxonomía NLSMA: cuestionario, bloques con número desigual. Modelo Standford: variables independientes: tipo de problema, n pasos en la resolución, inclusión de información superflua y existencia de frase clave. Diseño factorial 4x2x2x2. Evaluación de profesorado y seminarios: encuesta por correo. Criterios muestrales: tamaño del centro, zona geográfica. Variables controladas: centro, profesor y provincia. Método Flanders, grabación de las clases. Sistema de codificación de conductas e interacciones modificado con 10 categorías de ocurrencia. Sobre textos escolares concluyen que su extensión e interpretación es diversa, no plantean objetivos de conducta y adolecen de errores conceptuales. De la encuesta al profesorado extrae que casi todos son matemáticos, con poca formación adiccional. La mitad prefieren el sistema tradicional de enseñanza y aceptan la matemática moderna. Respecto a los seminarios, pobre funcionamiento. No esta extendida la evaluación previa del nivel del alumno y los programas no suelen incluir procedimientos de rectificación. El método NLSMA, útil para analizar las adquisiciones progresivas obteniendose agrupaciones características según niveles. La influencia de variables Standford es significativa y depende del nivel académico. La observación del profesor revela patrones de comportamiento característicos. Método válido para estudiar la interacción profesor-alumno. Ofrece programación completa y cuestionarios de evaluación para diversas áreas de Matemáticas. Resalta la importancia del seminario para organizar y evaluar. Relación maestro-alumno-materia como factor decisivo en el aprendizaje.
Resumo:
Redefinir las relaciones entre matemática y enseñanza. Pretende dar a conocer una época en que las Matemáticas y la enseñanza no estaban escindidas: la época pitagórica. La Escuela pitagórica y su relación con la Educación. Una clase de sexto de EGB con 15 alumnos y otra de séptimo con 12 alumnos. Para aumentar la motivación de los alumnos de primer curso de la Escuela de Formación del Profesorado de EGB de Barcelona hacia la Didáctica de las Matemáticas se introdujeron temas de la Historia de las Matemáticas, sobre todo de las Edades Antigua y Media. El siguiente paso fué comprobar si las creaciones matemáticas de la Escuela pitagórica conservaban su valor didáctico en cursos de EGB. Para ello se elaboró un programa semestral de Geometría a nivel sexto y septimo de EGB a partir de una metodología inspirada en el problema matemático del mosaico. Este programa se llevó a cabo en la escuela pública 'Josep Gras' de S. Llorenc Savall (Barcelona). Programa semestral de Geometría y Bibliografía. Se ha diseñado un histograma de frecuencias absolutas para cada habilidad matemática tomando como unidad un ejercicio donde se manifestaba puntualmente dicha habilidad. Análisis de correlación entre las habilidades y la forma de percibir el modelo. Ha quedado patente como la utilización de este método inspirado en el problema pitagórico del mosaico en EGB propicia un cambio en actividades y conductas de aprendizaje en el sentido de una mayor valoración y utilización de la intuición en la clase de Geometría. Ampliar la experiencia a otros centros de EGB con el fin de comprobar si los resultados obtenidos son generalizables. Incorporar temas de Historia de la Matemática en el currículum de formación del maestro. Fecha finalización tomada del código del documento.
Resumo:
La matemática pasa por reencontrar su sentido originario de la lengua de comunicación y de dominio del entorno, para lo que fue creada. Una matemática viva y significativa donde la comprensión del entorno y la realidad son los parámetros fundamentales.
Resumo:
Resumen tomado de la publicación. Este artículo forma parte del dossier 'La enseñanza de las matemáticas escolares: problemas y perspectivas'
Resumo:
Resumen del autor
Resumo:
Resumen basado en el de la publicación