425 resultados para Álgebra lineal
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicación
Resumo:
Se explica como debemos ponernos en el lugar de los protagonistas de una historia para poder así entender la misma y poder ver lo que hay detrás de ellos y de sus interpretaciones. Hay que tomar una referencia la cual puede ser información directa como las vivencias personales o la herencia social a través de mediadores. El punto más importante para educar la mirada prosocial es la percepción de la realidad y con ello también sus antecedentes y consecuencias. Las dimensiones para esta educación se resumen en nueve puntos a tener en cuenta que son la dimensión racional-emocional, convergente-divergente, central-periférico, situacional-histórico, sistémico-atómico, lineal-circular, rotación traslación positivo-negativo y consonante-disonante. Además desde estas nueve dimensiones se puede definir el pensamiento prosocial a través de siete categorías cognitivas que son empático versus apático, crítico versus conformista, creativo versus ritualista, dinámico versus estático, sistémico versus fragmentado, constructivo versus derrotista y eléctico versus polarizado.
Resumo:
En la sociedad de la información la demanda de alfabetización, por parte de personas de avanzada edad, se multiplica, el aprendizaje de la lectura es cada vez más requerido. Pero el proceso de alfabetización no se termina cuando se aprende a leer, sino que este el punto de comienzo. La oralidad, la escritura y las TIC, adquieren sentido como mediadoras e instrumentos de acción, como instrumentos de coordinación e interacción, con la información social, y con las personas físicamente distantes. Con las nuevas tecnologías nace la hiperlectura, una nueva forma de leer, una lectura no lineal que va rastreando diferentes documentos.
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Pretende elaborar materiales sobre el lenguaje aritmético y algebraico que exploten las técnicas de resolución de problemas y que integren las Matemáticas, las Ciencias Naturales, la Física y Química, el Diseño y la Lengua. Los objetivos son: mejorar la actividad docente del equipo en todas sus facetas (conceptualizador, orientador, enseñante, investigador y evaluador) desde la investigación en acción; recoger y tratar información matemática, comprenderla, valorarla y expresarla de forma precisa y rigurosa; resolver situaciones cuantitativas o cualitativas utilizando modelos aprendidos y un conjunto de estrategias específicas de resolución de problemas; y valorar la utilidad de medir y calcular de forma exacta y aproximada. La metodología comienza con un diagnóstico sobre la capacidad de simbolización matemática y las estrategias de resolución de problemas, se elabora una unidad didáctica con la que trabaja el grupo de tratamiento de la muestra, se pasan los cuestionarios de evaluación y se realizan los contrastes estadísticos. Evalúa el grado de adecuación de los materiales elaborados a los objetivos planteados por medio de cuestionarios, vídeo y entrevistas. Incluye los cuestionarios de diagnosis inicial, en el anexo I y dos unidades didácticas de álgebra, en el anexo II.
Resumo:
Se desarrolla una experiencia con estudiantes de primero de BUP en la que se aplican una nueva metodología de enseñanza de las Matemáticas, dado el alto porcentaje de suspensos de esta asignatura. Algunos de los objetivos se refieren a actitudes personales como la confianza en sí mismo, la capacidad de disfrutar pensando, de tomar decisiones, y de apreciar los propios progresos, y la paciencia y perseverancia en la búsqueda de la solución a un problema; y otros a las estrategias intelectuales como la abstracción, generalización, elaboración de hipótesis, sistematización y el uso de la analogía como método sistemático de razonamiento. La metodología se basa en la resolución de problemas con los que se trabaja, de forma conjunta, los conceptos de números, geometría, funciones, estadística y probabilidad, y álgebra para conseguir un aprendizaje significativo..
Resumo:
Proyecto de aproximación a la Historia del Arte a través de seis talleres rotativos (cerámica, madera, papel, dibujo, color, y mixto) compuestos por grupos reducidos de alumnos. Los objetivos son: fomentar y desarrollar la creatividad del alumno; conocer los diferentes movimientos artísticos y acercarse al conocimiento del plano y espacio mediante el dibujo lineal y la construcción de cuerpos geométricos; experimentar y usar distintas técnicas plásticas (collage, impresionismo, escayola); y promover entre los alumnos el estudio de la historia y la cultura. Las actividades realizadas en los talleres son: vasijas de cerámica decoradas con dibujos prehistóricos, esmaltes de cuerda, puzzles, muñecos articulados, mosaicos, flores de papel, reproducciones de pinturas de los siglos XIX y XX, máscaras de escayola, etc. Los materiales elaborados son presentados en la exposición de fin de curso. La evaluación de los alumnos tiene en cuenta su interés y participación, el nivel de adquisición de técnicas y su sensibilización hacia los movimientos artísticos.
Resumo:
La experiencia se desarrolla en el área de Matemáticas y se aplica en todos los niveles educativos, desde preescolar al ciclo superior. Los objetivos generales son: despertar en los alumnos el interés por el aprendizaje de las Matemáticas; conocer en profundidad el Diseño Curricular Base; e investigar con nuevos materiales curriculares en el área de Matemáticas. En líneas generales, los profesores que llevan a cabo la experiencia, dan mayor importancia a la formación que a la instrucción. Por ello, intentan inculcar en el alumno la observación, la formulación de cuestiones e hipótesis y la relación entre conceptos nuevos y conocidos para obtener conclusiones lógicas. En la planificación de las actividades se ha conjugado el trabajo individualizado con el trabajo en grupo. En su diseño se ha procurado que sean superables, para lograr sentimientos de autoestima personal, éxito y seguridad hacia el aprendizaje de las Matemáticas. La memoria incluye, por cada nivel educativo, una relación de los bloques temáticos tratados (álgebra, números decimales, fracciones...) junto con los objetivos y las actividades previstas para alcanzarlos (ejercicios de cálculo mental, resolución de problemas, juegos matemáticos, etc.). La evaluación atiende a aspectos cognoscitivos y al grado de desarrollo de otras destrezas y aptitudes que atañen al área de matemáticas (cálculo mental, lógica matemática, etc.). Se realiza de una forma continua, para ello se utilizan distintos instrumentos: escalas de estimación grupal, listas de control y anecdotarios.
Resumo:
Durante el curso 91-92 se ha elaborado y experimentado un material nuevo en la didáctica de las Matemáticas. Se intenta que este material sea más atractivo para los alumnos. Por ello se utiliza el recurso de los juegos y pasatiempos. La finalidad es reforzar ciertas destrezas matemáticas en los alumnos de primero de BUP. Los objetivos son: interesar a los alumnos en alguna actividad matemática; conseguir eliminar el rechazo hacia esta disciplina y ayudar a la superación de deficiencias mediante el refuerzo de automatismos básicos. Para conseguir estos objetivos se lleva a cabo una gran variedad de ejercicios de cálculo, álgebra, aritmética, geometría, etc. Todos ellos se incluyen en el proyecto junto con su descripción y la formulación de objetivos específicos. La evaluación del proyecto se realiza en dos fases: por un lado se hace una evaluación clásica para comprobar si se han superado las deficiencias más graves. Y por otro, se efectuará una encuesta final y anónima para valorar el cambio de actitud hacia las Matemáticas.
Resumo:
El proyecto propone elaborar en el área de Matemáticas un programa de refuerzo y materiales correspondientes para facilitar al alumnado con dificultades de aprendizaje en esta materia, la adquisición de conocimientos básicos. Los objetivos son: superar las deficiencias en Matemáticas, reforzando los automatismos básicos; eliminar el rechazo hacia la asignatura de los alumnos con deficiencias en este área; y fomentar la aplicación de nuevas metodologías en el aula que faciliten la adquisición de dichos conocimientos. Así, se plantea una metodología activa basada en la utilización de juegos y pasatiempos como recursos didácticos, acentuando el carácter lúdico del aprendizaje de las Matemáticas. La experiencia se desarrolla durante 1 hora extra a la semana de carácter obligatorio para todos los alumnos. En ella se trabajan el sistema métrico decimal, fracciones, potencias, gráficos, álgebra, etc. a través de puzzles, dominós, programas informáticos, pasatiempos, barajas de cartas, etc. La valoración de la experiencia se considera positiva, aunque se han tenido que elaborar nuevos materiales para mantener el nivel de motivación del alumnado al ser este el tercer año de realización del proyecto. Se incluyen en la memoria la prueba inicial que se realiza al principio de curso y los ejercicios realizados o propuestos en el programa de refuerzo.
Resumo:
El presente trabajo trata de dilucidar algunos aspectos acerca de la didáctica del lenguaje algebraico. En la investigación, en una primera parte, se analizan las dificultades del aprendizaje del lenguaje algebraico, y particularmente en la temática de la didáctica de las matemáticas. Concretamente de la didáctica del álgebra y su lenguaje. Se reflexiona sobre aspectos como el pensamiento aritmético y algebraico, la abstracción y la generalización, los conceptos de signo y símbolo, la semántica y la sintaxis del lenguaje algebraico, la psicogénesis del álgebra y las dificultades concretas en la enseñanza-aprendizaje de esta materia. En la segunda parte de la investigación, se exponen los resultados de una experiencia práctica realizada. Se trata de un trabajo de campo que evalúa, a través de un cuestionario original, el grado de desarrollo de la capacidad de comprensión, expresión, generalización y formalización de los alumnos que comienzan el aprendizaje del lenguaje algebraico. Finalmente, en la tercera se realiza una propuesta para la aplicación al proceso de comunicación didáctica. Para obtener conclusiones válidas en la investigación, se realiza un doble análisis del mismo, por un lado cualitativo, basado en las respuestas y en la observación diaria en el aula; y cuantitativo, basado en métodos estadísticos propios de las investigaciones sociales, estadística descriptiva e inferencial. A partir de las conclusiones obtenidas en el análisis previo, se enuncian pautas y orientaciones, tanto en los niveles de primaria como en los de secundaria, para resolver los problemas detectados y que se resumen en el aprendizaje no significativo del álgebra.