53 resultados para Sand mining activities

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Environmental accountability has become a major source of competitive advantage for industrial companies, because customers consider it as relevant buying criterion. However, in order to leverage their environmental responsibility, industrial suppliers have to be able to demonstrate the environmental value of their products and services, which is also the aim of Kemira, a global water chemistry company considered in this study. The aim of this thesis is to develop a tool which Kemira can use to assess the environmental value of their solutions for the customer companies in mining industry. This study answers to questions on what kinds of methods to assess environmental impacts exist, and what kind of tool could be used to assess the environmental value of Kemira’s water treatment solutions. The environmental impacts of mining activities vary greatly between different mines. Generally the major impacts include the water related issues and wastes. Energy consumption is also a significant environmental aspect. Water related issues include water consumption and impacts in water quality. There are several methods to assess environmental impacts, for example life cycle assessment, eco-efficiency tools, footprint calculations and process simulation. In addition the corresponding financial value may be estimated utilizing monetary assessment methods. Some of the industrial companies considered in the analysis of industry best practices use environmental and sustainability assessments. Based on the theoretical research and conducted interviews, an Excel based tool utilizing reference data on previous customer cases and customer specific test results was considered to be most suitable to assess the environmental value of Kemira’s solutions. The tool can be used to demonstrate the functionality of Kemira’s solutions in customers’ processes, their impacts in other process parameters and their environmental and financial aspects. In the future, the tool may be applied to fit also Kemira’s other segments, not only mining industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The environmental impacts of a single mine often remain local, but acidic and metal-rich acid mine drainage (AMD) from the waste materials may pose a serious threat to adjacent surface waters and their ecosystems. Testate amoebae (thecamoebian) analysis was used together with lake sediment geochemistry to study and evaluate the ecological effects of sulphidic metal mines on aquatic environments. Three different mines were included in the study: Luikonlahti Cu-mine in Kaavi, eastern Finland, Haveri Cu-Au mine in Ylöjärvi, southern Finland and Pyhäsalmi Zn-Cu-S mine in Pyhäjärvi, central Finland. Luikonlahti and Haveri are closed mines, but Pyhäsalmi is still operating. The sampling strategy was case specific, and planned to provide a representative sediment sample series to define natural background conditions, to detect spatial and temporal variations in mine impacts, to evaluate the possible recovery after the peak contamination, and to distinguish the effects of other environmental factors from the mining impacts. In the Haveri case, diatom analyses were performed alongside thecamoebian analysis to evaluate the similarities and differences between the two proxies. The results of the analyses were investigated with multivariate methods (direct and indirect ordinations, diversity and distance measure indices). Finally, the results of each case study were harmonized, pooled, and jointly analyzed to summarize the results for this dissertation. Geochemical results showed broadly similar temporal patterns in each case. Concentrations of ions in the pre-disturbance samples defined the natural baseline against which other results were compared. The beginning of the mining activities had only minor impacts on sediment geochemistry, mainly appearing as an increased clastic input into the lakes at Haveri and Pyhäsalmi. The active mining phase was followed by the metallic contamination and, subsequently, by the most recent change towards decreased but still elevated metal concentrations in the sediments. Because of the delay in the oxidation of waste material and formation of AMD, the most intense, but transient metal contamination phase occurred in the post-mining period at Luikonlahti and Haveri. At Pyhäsalmi, the highest metal contamination preceded effluent mitigation actions. Spatial gradients were observed besides the temporal evolution in both the pre-disturbance and mine-impacted samples from Luikonlahti and Pyhäsalmi. The geochemical gradients varied with distance from the main source of contaminants (dispersion and dilution) and with water depth (redox and pH). The spatial extent of the highest metal contamination associated with these mines remained rather limited. At Haveri, the metallic impact was widespread, with the upstream site in another lake basin found to be contaminated. Changes in thecamoebian assemblages corresponded well with the geochemical results. Despite some differences, the general features and ecological responses of the faunal assemblages were rather similar in each lake. Constantly abundant strains of Difflugia oblonga, Difflugia protaeiformis and centropyxids formed the core of these assemblages. Increasing proportions of Cucurbitella tricuspis towards the surface samples were found in all of the cases. The results affirmed the indicator value of some already known indicator forms, but such as C. tricuspis and higher nutrient levels, but also elicited possible new ones such as D. oblonga ‘spinosa’ and clayey substrate, high conductivity and/or alkalinity, D. protaeiformis ‘multicornis’ and pH, water hardness and the amount of clastic material and Centropyxis constricta ‘aerophila’ and high metal and S concentrations. In each case, eutrophication appeared to be the most important environmental factor, masking the effects of other variables. Faunal responses to high metal inputs in sediments remained minor, but were nevertheless detectable. Besides the trophic state of the lake, numerical methods suggested overall geochemical conditions (pH, redox) to be the most important factor at Luikonlahti, whereas the Haveri results showed the clearest connection between metals and amoebae. At Pyhäsalmi, the strongest relationships were found between Ca- and S-rich present loading, redox conditions and substrate composition. Sediment geochemistry and testate amoeba analysis proved to be a suitable combination of methods to detect and describe the aquatic mine impacts in each specific case, to evaluate recovery and to differentiate between the effects of different anthropogenic and natural environmental factors. It was also suggested that aquatic mine impacts can be significantly mitigated by careful design and after-care of the waste facilities, especially by reducing and preventing AMD. The case-specific approach is nevertheless necessary because of the unique characteristics of each mine and variations in the environmental background conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mining has severe impacts on its surrounding. Particularly in the developing countries it has degraded the environment and signigicantly altered the socio-economical dynamics of the hosts. Especially relocation disrupts people from their homes, livelihoods, cultures and social activities. Mining industry has failed to develop the local host and streghten its governance structures; instead it has further degraded the development of mineral rich third world countries, which are among the world poorest ones. Cash flows derived from mining companies have not benefitted the crass-root level that however, bears most of the detrimental impacts. Especially if the governance structure of the host is weak, the sudden wealth is likely to accelerate disparities, corruption and even fuel wars. Environmental degradation, miscommunication, mistrust and disputes over land use have created conflicts between the communities and a mining company in Obuasi, Ghana; a case study of this thesis. The disputes are deeply rooted and further fuelled by unrealistic expectations and broken promises. The relations with artisanal and illegal miners have been especially troublesome. Illegal activities, mainly encroachment of the land and assets of the mine, such as vandalising tailings pipes have resulted in profits losses, environmental degradation and security hazards. All challenges mentioned above have to be addressed locally with site-specific solutions. It is vital to increase two-way communication, initiate collaboration and build capacity of the stakeholders such as local communities, NGOs and governance authorities. The locals must be engaged to create livelihood opportunities that are designed with and for them. Capacity can also be strengthened through education and skills training, such as women’s literacy programs. In order to diminish the overdependence of locals to the mine, the activities have to be self -sufficient and able to survive without external financial and managerial inputs. Additionally adequate and fair compensation practises and dispute resolution methods that are understood and accepted by all parties have to be agreed on as early as possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual data mining (VDM) tools employ information visualization techniques in order to represent large amounts of high-dimensional data graphically and to involve the user in exploring data at different levels of detail. The users are looking for outliers, patterns and models – in the form of clusters, classes, trends, and relationships – in different categories of data, i.e., financial, business information, etc. The focus of this thesis is the evaluation of multidimensional visualization techniques, especially from the business user’s perspective. We address three research problems. The first problem is the evaluation of projection-based visualizations with respect to their effectiveness in preserving the original distances between data points and the clustering structure of the data. In this respect, we propose the use of existing clustering validity measures. We illustrate their usefulness in evaluating five visualization techniques: Principal Components Analysis (PCA), Sammon’s Mapping, Self-Organizing Map (SOM), Radial Coordinate Visualization and Star Coordinates. The second problem is concerned with evaluating different visualization techniques as to their effectiveness in visual data mining of business data. For this purpose, we propose an inquiry evaluation technique and conduct the evaluation of nine visualization techniques. The visualizations under evaluation are Multiple Line Graphs, Permutation Matrix, Survey Plot, Scatter Plot Matrix, Parallel Coordinates, Treemap, PCA, Sammon’s Mapping and the SOM. The third problem is the evaluation of quality of use of VDM tools. We provide a conceptual framework for evaluating the quality of use of VDM tools and apply it to the evaluation of the SOM. In the evaluation, we use an inquiry technique for which we developed a questionnaire based on the proposed framework. The contributions of the thesis consist of three new evaluation techniques and the results obtained by applying these evaluation techniques. The thesis provides a systematic approach to evaluation of various visualization techniques. In this respect, first, we performed and described the evaluations in a systematic way, highlighting the evaluation activities, and their inputs and outputs. Secondly, we integrated the evaluation studies in the broad framework of usability evaluation. The results of the evaluations are intended to help developers and researchers of visualization systems to select appropriate visualization techniques in specific situations. The results of the evaluations also contribute to the understanding of the strengths and limitations of the visualization techniques evaluated and further to the improvement of these techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research is to observe the state of customer value management in Outotec Oyj, determine the key development areas and develop a phase model with which to guide the development of a customer value based sales tool. The study was conducted with a constructive research approach with the focus of identifying a problem and developing a solution for the problem. As a basis for the study, the current literature involving customer value assessment and solution and customer value selling was studied. The data was collected by conducting 16 interviews in two rounds within the company and it was analyzed by coding openly. First, seven important development areas were identified, out of which the most critical were “Customer value mindset inside the company” and “Coordination of customer value management activities”. Utilizing these seven areas three functionality requirements, “Preparation”, “Outotec’s value creation and communication” and “Documentation” and three development requirements for a customer value sales tool were identified. The study concluded with the formulation of a phase model for building a customer value based sales tool. The model included five steps that were defined as 1) Enable customer value utilization, 2) Connect with the customer, 3) Create customer value, 4) Define tool to facilitate value selling and 5) Develop sales tool. Further practical activities were also recommended as a guide for executing the phase model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Kalkituksen vaikutus piparmintun ja Sachalinin mintun satoon Pohjois-Suomessa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena oli selvittää arvoketjuanalyysin avulla toiminnot, joilla voittoatavoittelemattoman, julkisen osakeyhtiön toimintaa voitaisiin kuvata. Tarkoituksena oli selvittää mainitut toiminnot yleisesti ja luoda malli kohdeyrityksen arvoketjusta ja sen toiminnoista. Tutkielma jakautuu teoreettiseen ja empiiriseen osaan. Ensimmäinen pohjautuu aikaisempaan tutkimukseen ja kirjallisuuteen sidosryhmistä, arvon muodostumisesta ja arvoketjuanalyysistä. Jälkimmäinen on laadullista tapaustutkimusta. Empiriassa mallinnettiin Lappeenranta Innovation Oy:nsisäisiä toimintoja ja sidosryhmien odotuksia. Empiirinen tutkimus perustui kohdeyrityksen omistajille ja henkilöstölle tehtyihin haastatteluihin sekä yrityksen toiminnan päivittäiseen seurantaan. Johtopäätöksenätodettiin, että julkisen, voittoa tavoittelemattoman yrityksen toiminnot on mahdollista kuvata arvoketjuanalyysin avulla. Alan ja yrityksen asettamat erityispiirteet toivat haasteita määrittelylle, mutta silti arvoketju antoi selkeän tavan kohdeyrityksen toimintojen mallintamiselle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latinalaisen Amerikan osuus maailmantaloudesta on pieni verrattuna sen maantieteelliseen kokoon, väkilukuun ja luonnonvaroihin. Aluetta pidetään kuitenkin yhtenä tulevaisuuden merkittävistä kasvumarkkinoista. Useissa Latinalaisen Amerikan maissa on teollisuutta, joka hyödyntää luonnonvaroja ja tuottaa raaka-aineita sekä kotimaan että ulkomaiden markkinoille. Tällaisia tyypillisiä teollisuudenaloja Latinalaisessa Amerikassa ovat kaivos- ja metsäteollisuus sekä öljyn ja maakaasun tuotanto. Näiden teollisuudenalojen tuotantolaitteiden ja koneiden valmistusta ei Latinalaisessa Amerikassa juurikaan ole. Ne tuodaan yleensä Pohjois-Amerikasta ja Euroopasta. Tässä diplomityössä tutkitaan sähkömoottorien ja taajuusmuuttajien markkinapotentiaalia Latinalaisessa Amerikassa. Tutkimuksessa perehdytään Latinalaisen Amerikan maiden kansantalouksien tilaan sekä arvioidaan sähkömoottorien ja taajuusmuuttajien markkinoiden kokoa tullitilastojen avulla. Chilen kaivosteollisuudessa arvioidaan olevan erityistä potentiaalia. Diplomityössä selvitetään ostoprosessin kulkua Chilen kaivosteollisuudessa ja eri asiakastyyppien roolia siinä sekä tärkeimpiä päätöskriteerejä toimittaja- ja teknologiavalinnoissa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomedical research is currently facing a new type of challenge: an excess of information, both in terms of raw data from experiments and in the number of scientific publications describing their results. Mirroring the focus on data mining techniques to address the issues of structured data, there has recently been great interest in the development and application of text mining techniques to make more effective use of the knowledge contained in biomedical scientific publications, accessible only in the form of natural human language. This thesis describes research done in the broader scope of projects aiming to develop methods, tools and techniques for text mining tasks in general and for the biomedical domain in particular. The work described here involves more specifically the goal of extracting information from statements concerning relations of biomedical entities, such as protein-protein interactions. The approach taken is one using full parsing—syntactic analysis of the entire structure of sentences—and machine learning, aiming to develop reliable methods that can further be generalized to apply also to other domains. The five papers at the core of this thesis describe research on a number of distinct but related topics in text mining. In the first of these studies, we assessed the applicability of two popular general English parsers to biomedical text mining and, finding their performance limited, identified several specific challenges to accurate parsing of domain text. In a follow-up study focusing on parsing issues related to specialized domain terminology, we evaluated three lexical adaptation methods. We found that the accurate resolution of unknown words can considerably improve parsing performance and introduced a domain-adapted parser that reduced the error rate of theoriginal by 10% while also roughly halving parsing time. To establish the relative merits of parsers that differ in the applied formalisms and the representation given to their syntactic analyses, we have also developed evaluation methodology, considering different approaches to establishing comparable dependency-based evaluation results. We introduced a methodology for creating highly accurate conversions between different parse representations, demonstrating the feasibility of unification of idiverse syntactic schemes under a shared, application-oriented representation. In addition to allowing formalism-neutral evaluation, we argue that such unification can also increase the value of parsers for domain text mining. As a further step in this direction, we analysed the characteristics of publicly available biomedical corpora annotated for protein-protein interactions and created tools for converting them into a shared form, thus contributing also to the unification of text mining resources. The introduced unified corpora allowed us to perform a task-oriented comparative evaluation of biomedical text mining corpora. This evaluation established clear limits on the comparability of results for text mining methods evaluated on different resources, prompting further efforts toward standardization. To support this and other research, we have also designed and annotated BioInfer, the first domain corpus of its size combining annotation of syntax and biomedical entities with a detailed annotation of their relationships. The corpus represents a major design and development effort of the research group, with manual annotation that identifies over 6000 entities, 2500 relationships and 28,000 syntactic dependencies in 1100 sentences. In addition to combining these key annotations for a single set of sentences, BioInfer was also the first domain resource to introduce a representation of entity relations that is supported by ontologies and able to capture complex, structured relationships. Part I of this thesis presents a summary of this research in the broader context of a text mining system, and Part II contains reprints of the five included publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we study the field of opinion mining by giving a comprehensive review of the available research that has been done in this topic. Also using this available knowledge we present a case study of a multilevel opinion mining system for a student organization's sales management system. We describe the field of opinion mining by discussing its historical roots, its motivations and applications as well as the different scientific approaches that have been used to solve this challenging problem of mining opinions. To deal with this huge subfield of natural language processing, we first give an abstraction of the problem of opinion mining and describe the theoretical frameworks that are available for dealing with appraisal language. Then we discuss the relation between opinion mining and computational linguistics which is a crucial pre-processing step for the accuracy of the subsequent steps of opinion mining. The second part of our thesis deals with the semantics of opinions where we describe the different ways used to collect lists of opinion words as well as the methods and techniques available for extracting knowledge from opinions present in unstructured textual data. In the part about collecting lists of opinion words we describe manual, semi manual and automatic ways to do so and give a review of the available lists that are used as gold standards in opinion mining research. For the methods and techniques of opinion mining we divide the task into three levels that are the document, sentence and feature level. The techniques that are presented in the document and sentence level are divided into supervised and unsupervised approaches that are used to determine the subjectivity and polarity of texts and sentences at these levels of analysis. At the feature level we give a description of the techniques available for finding the opinion targets, the polarity of the opinions about these opinion targets and the opinion holders. Also at the feature level we discuss the various ways to summarize and visualize the results of this level of analysis. In the third part of our thesis we present a case study of a sales management system that uses free form text and that can benefit from an opinion mining system. Using the knowledge gathered in the review of this field we provide a theoretical multi level opinion mining system (MLOM) that can perform most of the tasks needed from an opinion mining system. Based on the previous research we give some hints that many of the laborious market research tasks that are done by the sales force, which uses this sales management system, can improve their insight about their partners and by that increase the quality of their sales services and their overall results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän tutkimuksen kohdeorganisaatio on suuren teollisuusyrityksen sisäinen raaka-aineen hankkija ja toimittaja. Tutkimuksessa selvitetään, mistä kohdeorganisaation hankinta-asiakkuuksien arvo muodostuu ja kuinka olemassa olevan liiketoimintadatan perusteella voidaan tutkia, arvioida ja luokitella kauppojen ja asiakkuuksien arvokkuutta aikaan sitomatta, objektiivisesti ja luotettavasti. Tutkimuksen teoriaosiossa esitellään lähestymistapoja ja menetelmiä, joiden avulla voidaan jalostaa olemassa olevasta datasta uutta sidosryhmätietämystä liiketoiminnan käyttöön, sekä tarkastellaan asiakaskannattavuusanalyysin, portfolioanalyysin, sekä asiakassegmentoinnin perusteita ja malleja. Näiden teorioiden ja mallien pohjalta rakennetaan kohdeorganisaatiolle räätälöity, indeksoituihin hinta-, määrä- ja kauppojen toistuvuus-muuttujiin perustuva, asiakkuuksien arvottamis- ja luokittelumalli. Arvottamis- ja luokittelumalli testataan vuosien 2003–2007 liiketoimintadatasta muodostetulla 389 336 kaupparivin otoksella, joka sisältää 42 186 arvioitavaa asiakkuussuhdetta. Merkittävin esille nouseva havainto on noin 5 000:n keskimääräistä selkeästi kalliimman asiakkuuden ryhmä. Aineisto ja sen poikkeavuudet testataan tilastollisin menetelmin, jotta saadaan selville asiakkuuden arvoon vaikuttavat ja arvoa selittävät tekijät. Lopuksi pohditaan arvottamismallin merkitystä analyyttisemman ostotoiminnan ja asiakkuudenhallinnan välineenä, sekä esitetään muutamia parannusehdotuksia.