27 resultados para Moving average
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The thesis examines the profitability of DMAC trading rules in the Finnish stock market over the 1996-2012 period. It contributes to the existing technical analysis literature by comparing for the first time the performance of DMAC strategies based on individual stock trading portfolios to the performance of index trading strategies based on the trading on the index (OMX Helsinki 25) that consists of the same stocks. Besides, the market frictions including transaction costs and taxes are taken into account, and the results are reported from both institutional and individual investor’s perspective. Performance characteristic of DMAC rules are evaluated by simulating 19,900 different trading strategies in total for two non- overlapping 8-year sub-periods, and decomposing the full-sample-period performance of DMAC trading strategies into distinct bullish- and bearish-period performances. The results show that the best DMAC rules have predictive power on future price trends, and these rules are able to outperform buy-and-hold strategy. Although the performance of the DMAC strategies is highly dependent on the combination of moving average lengths, the best DMAC rules of the first sub-period have also performed well during the latter sub-period in the case of individual stock trading strategies. According to the results, the outperformance of DMAC trading rules over buy-and-hold strategy is mostly attributed to their superiority during the bearish periods, and particularly, during stock market crashes.
Resumo:
This work is devoted to the problem of reconstructing the basis weight structure at paper web with black{box techniques. The data that is analyzed comes from a real paper machine and is collected by an o®-line scanner. The principal mathematical tool used in this work is Autoregressive Moving Average (ARMA) modelling. When coupled with the Discrete Fourier Transform (DFT), it gives a very flexible and interesting tool for analyzing properties of the paper web. Both ARMA and DFT are independently used to represent the given signal in a simplified version of our algorithm, but the final goal is to combine the two together. Ljung-Box Q-statistic lack-of-fit test combined with the Root Mean Squared Error coefficient gives a tool to separate significant signals from noise.
Resumo:
We provide an incremental quantile estimator for Non-stationary Streaming Data. We propose a method for simultaneous estimation of multiple quantiles corresponding to the given probability levels from streaming data. Due to the limitations of the memory, it is not feasible to compute the quantiles by storing the data. So estimating the quantiles as the data pass by is the only possibility. This can be effective in network measurement. To provide the minimum of the mean-squared error of the estimation, we use parabolic approximation and for comparison we simulate the results for different number of runs and using both linear and parabolic approximations.
Resumo:
Tässä tutkielmassatarkastellaan maakaasun hinnoittelussa käytettyjen sidonnaisuustekijöiden hintadynamiikkaa ja niiden vaikutusta maakaasun hinnanmuodostukseen. Pääasiallisena tavoitteena on arvioida eri aikasarjamenetelmien soveltuvuutta sidonnaisuustekijöiden ennustamisessa. Tämä toteutettiin analysoimalla eri mallien ja menetelmien ominaisuuksia sekä yhteen sovittamalla nämä eri energiamuotojen hinnanmuodostuksen erityispiirteisiin. Tutkielmassa käytetty lähdeaineisto on saatu Gasum Oy:n tietokannasta. Maakaasun hinnoittelussa käytetään kolmea sidonnaisuustekijää seuraavilla painoarvoilla: raskaspolttoöljy 50%, indeksi E40 30% ja kivihiili 20%. Kivihiilen ja raskaan polttoöljyn hinta-aineisto koostuu verottomista dollarimääräisistä kuukausittaisista keskiarvoista periodilta 1.1.1997 - 31.10.2004. Kotimarkkinoiden perushintaindeksin alaindeksin E40 indeksi-aineisto, joka kuvaa energian tuottajahinnan kehitystä Suomessa ja koostuu tilastokeskuksen julkaisemista kuukausittaisista arvoista periodilta 1.1.2000 - 31.10.2004. Tutkimuksessa tarkasteltujen mallien ennustuskyky osoittautui heikoksi. Kuitenkin tuloksien perusteella voidaan todeta, että lyhyellä aikavälillä EWMA-malli antoi harhattomimman ennusteen. Muut testatuista malleista eivät kyenneet antamaan riittävän luotettavia ja tarkkoja ennusteita. Perinteinen aikasarja-analyysi kykeni tunnistamaan aikasarjojen kausivaihtelut sekä trendit. Lisäksi liukuvan keskiarvon menetelmä osoittautui jossain määrin käyttökelpoiseksi aikasarjojen lyhyen aikavälin trendien identifioinnissa.
Resumo:
Seaports play an important part in the wellbeing of a nation. Many nations are highly dependent on foreign trade and most trade is done using sea vessels. This study is part of a larger research project, where a simulation model is required in order to create further analyses on Finnish macro logistical networks. The objective of this study is to create a system dynamic simulation model, which gives an accurate forecast for the development of demand of Finnish seaports up to 2030. The emphasis on this study is to show how it is possible to create a detailed harbor demand System Dynamic model with the help of statistical methods. The used forecasting methods were ARIMA (autoregressive integrated moving average) and regression models. The created simulation model gives a forecast with confidence intervals and allows studying different scenarios. The building process was found to be a useful one and the built model can be expanded to be more detailed. Required capacity for other parts of the Finnish logistical system could easily be included in the model.
Resumo:
Identification of order of an Autoregressive Moving Average Model (ARMA) by the usual graphical method is subjective. Hence, there is a need of developing a technique to identify the order without employing the graphical investigation of series autocorrelations. To avoid subjectivity, this thesis focuses on determining the order of the Autoregressive Moving Average Model using Reversible Jump Markov Chain Monte Carlo (RJMCMC). The RJMCMC selects the model from a set of the models suggested by better fitting, standard deviation errors and the frequency of accepted data. Together with deep analysis of the classical Box-Jenkins modeling methodology the integration with MCMC algorithms has been focused through parameter estimation and model fitting of ARMA models. This helps to verify how well the MCMC algorithms can treat the ARMA models, by comparing the results with graphical method. It has been seen that the MCMC produced better results than the classical time series approach.
Resumo:
The goal of this research was to make an overall sight to VIX® and how it can be used as a stock market indicator. Volatility index often referred as the fear index, measures how much it costs for investor to protect his/her S&P 500 position from fluctuations with options. Over the relatively short history of VIX it has been a successful timing coordinator and it has given incremental information about the market state adding its own psychological view of the amount of fear and greed. Correctly utilized VIX information gives a considerable advantage in timing market actions. In this paper we test how VIX works as a leading indicator of broad stock market index such as S&P 500 (SPX). The purpose of this paper is to find a working way to interpret VIX. The various tests are made on time series data ranging from the year 1990 to the year 2010. The 10-day simple moving average strategy gave significant profits from the whole time when VIX data is available. Strategy was able to utilize the increases of SPX in example portfolio value and was able to step aside when SPX was declining. At the times when portfolio was aside of S it was on safety fund like on treasury bills getting an annual yield of 3 percent. On the other side just a static number’s of VIX did not work as indicators in a profit making way.
Resumo:
The purpose of this study is to examine macroeconomic indicators‟ and technical analysis‟ ability to signal market crashes. Indicators examined were Yield Spread, The Purchasing Managers Index and the Consumer Confidence Index. Technical Analysis indicators were moving average, Moving Average Convergence-Divergence and Relative Strength Index. We studied if commonly used macroeconomic indicators can be used as a warning system for a stock market crashes as well. The hypothesis is that the signals of recession can be used as signals of stock market crash and that way a basis for a hedging strategy. The data is collected from the U.S. markets from the years 1983-2010. Empirical studies show that macroeconomic indicators have been able to explain the future GDP development in the U.S. in research period and they were statistically significant. A hedging strategy that combined the signals of yield spread and Consumer Confidence Index gave most useful results as a basis of a hedging strategy in selected time period. It was able to outperform buy-and-hold strategy as well as all of the technical indicator based hedging strategies.
Resumo:
This work is devoted to the analysis of signal variation of the Cross-Direction and Machine-Direction measurements from paper web. The data that we possess comes from the real paper machine. Goal of the work is to reconstruct the basis weight structure of the paper and to predict its behaviour to the future. The resulting synthetic data is needed for simulation of paper web. The main idea that we used for describing the basis weight variation in the Cross-Direction is Empirical Orthogonal Functions (EOF) algorithm, which is closely related to Principal Component Analysis (PCA) method. Signal forecasting in time is based on Time-Series analysis. Two principal mathematical procedures that we used in the work are Autoregressive-Moving Average (ARMA) modelling and Ornstein–Uhlenbeck (OU) process.
Liukuviin keskiarvoihin perustuvien kaupankäyntistrategioiden suoriutuminen Suomen osakemarkkinoilla
Resumo:
Tämän tutkimuksen tarkoituksena on selvittää, pystyykö teknistä analyysiä hyväksikäyttävä sijoittaja saamaan markkinatuottoa parempaa tuottoa Suomen osakemarkkinoilla. Tutkielman aineisto koostuu 24:stä vaihdetuimmasta osakkeesta Helsingin pörssissä. Nämä osakkeet muodostavat OMX25 –indeksin lukuun ottamatta yhtä osaketta, jota ei oltu vielä noteerattu tarkasteluperiodin alussa. Teknisen analyysin menetelminä käytetään neljää eripituista liukuvaa keskiarvoa (5, 20, 50 ja 100). Näistä muodostetaan liukuvien keskiarvojen kaksinkertaiset leikkausmenetelmät, joiden avulla saadaan osto- ja myyntisignaaleja kullekin osakkeelle. Tutkielman vertailukohteena käytetään perinteisen rahoitusteorian suosimaa osta ja pidä -strategiaa. Empiiristen testien tarkastelujakso on 1.1.2006 – 30.9.2010. Tutkielmassa havaittiin, että teknistä analyysiä hyväksikäyttäen voi saada markkinoita parempaa tuottoa, vaikka kaikki tulokset eivät olleet tilastollisesti merkittäviä. Tutkimuksessa ei otettu huomioon useista kaupoista syntyviä transaktiokustannuksia, veroja eikä korkotuottoa, jonka sijoittaja saisi pitäessään varoja esimerkiksi pankkitilillä ennen seuraavaa kauppaa. Erityisen huomionarvoista tässä tutkimuksessa oli se, että tekninen analyysi antoi sijoittajalle erittäin hyvän suojan finanssikriisin aikaiselta kurssilaskulta. Se antoi sijoittajalle selvän myyntisignaalin myydä osakkeet, ennen kuin kurssit alkoivat laskea rajusti.
Resumo:
Quite often, in the construction of a pulp mill involves establishing the size of tanks which will accommodate the material from the various processes in which case estimating the right tank size a priori would be vital. Hence, simulation of the whole production process would be worthwhile. Therefore, there is need to develop mathematical models that would mimic the behavior of the output from the various production units of the pulp mill to work as simulators. Markov chain models, Autoregressive moving average (ARMA) model, Mean reversion models with ensemble interaction together with Markov regime switching models are proposed for that purpose.
Resumo:
Tutkielma käyttää automaattista kuviontunnistusalgoritmia ja yleisiä kahden liukuvan keskiarvon leikkauspiste –sääntöjä selittääkseen Stuttgartin pörssissä toimivien yksityissijoittajien myynti-osto –epätasapainoa ja siten vastatakseen kysymykseen ”käyttävätkö yksityissijoittajat teknisen analyysin menetelmiä kaupankäyntipäätöstensä perustana?” Perusolettama sijoittajien käyttäytymisestä ja teknisen analyysin tuottavuudesta tehtyjen tutkimusten perusteella oli, että yksityissijoittajat käyttäisivät teknisen analyysin metodeja. Empiirinen tutkimus, jonka aineistona on DAX30 yhtiöiden data vuosilta 2009 – 2013, ei tuottanut riittävän selkeää vastausta tutkimuskysymykseen. Heikko todistusaineisto näyttää kuitenkin osoittavan, että yksityissijoittajat muuttavat kaupankäyntikäyttäytymistänsä eräiden kuvioiden ja leikkauspistesääntöjen ohjastamaan suuntaan.
Resumo:
Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.