23 resultados para Flexible supports

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ohjelmistoprosesseissa kulkee käytännössä sama tieto muuntuen eri vaiheissa käyttökohteensa mukaan. Tätä mallinnusinformaatiota on mahdollista siirtää ja käyttää uudelleen, mikä säästää resursseja ja vähentää riskejä kaikissa projektin vaiheissa. Projektin alussa ohjelmiston toimintoja suunnitellaan ja niitä mallinnetaan esim. UML-malleilla. Tätä mallinnusinformaatiota hallitaan erilaisilla CASE-työkaluilla, joiden avullamalleja on helppo konvertoida toteutusvaihetta varten lähdekoodiksi. Lähdekoodivoidaan tuoda takaisin malliksi jatkosuunnittelua varten, jos työkalu tukee ominaisuutta. Testausvaiheessa lähdekoodi voidaan parsia, jotta siitä saadaan esille olennainen mallinnusinformaatio testejä varten. Lopulta dokumentaatiota voidaan generoida automaattisesti esim. Javadocilla. Mallinnusinformaation hyödyntäminen onnistuu hyvin teoriassa, mutta se ei ole niin suoraviivaista käytännössä. Tämänhetkiset työkalut eivät ole tarpeeksi joustavia mallinnusinformaation palauttamiseksi edellisiin vaiheisiin, joten ne ajavat toteuttamaan projekteja lineaarisesti. Keskikokoisessakin ohjelmistoprojektissa on suuri määrä mallinnusinformaatiota ja se lisää haasteita. Vaikka työkalut ovat kankeita, mallinnusinformaation hyödyntämisen on koettu tehostavan ohjelmistoprosesseja. Siksi sen keinoja tutkitaan ahkerasti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkielman tavoitteena on luoda liiketoimintamalli, joka tukee langattomien matkaviestintäpalveluiden markkinoiden luomista kehittyvillä markkinoilla. Teoreettinen osa tarkastelee langattomien matkaviestintäpalveluiden liiketoimintamallin kehittämisen tärkeimpiä elementtejä CIS maissa. Teoreettisen kappaleen tuloksena saadaan puitteet, jonka avulla liiketoimintamalli matkaviestintäpalveluille voidaan kehittää. Tutkielman empiirinen osa on toteutettu case tutkimuksena, jonka tavoitteena on ollut langattomien matkaviestintäpalvelujen markkinoiden luominen CIS maissa. Pääasiallinen empiirisen tiedon lähde on ollut teemahaastattelut. Tuloksena saatuja empiirisen osan tietoja verrataan teoriakappaleen vastaaviin tuloksiin Tulokset osoittavat, että radikaalin korkean teknologian innovaation markkinoiden luominen on hidas prosessi, joka vaatii kärsivällisyyttä yritykseltä. Markkinoiden, teknologian ja strategian epävarmuustekijät tuovat epävarmuutta kehittyvälle toimialalle ja markkinoille, joka vaikeuttaa liiketoimintamallin kehittämistä. Tärkein tekijä on palvelujen markkinointi ennemmin kuin teknologian. Avain kyvykkyys markkinoiden luomisessa on oppiminen, ei tietäminen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämä työ on tehty yhteistyössä kansainvälisen metsäteollisuusyrityksen Stora Enson kanssa. Työ on osa Stora Enson strategiaa kehitettäessä uusia ja innovatiivisia pakkausmateriaaleja ja ratkaisuja joustopakkausmarkkinoille. Työn päätavoitteina oli selvittää, millaisia odotuksia tuotemerkkienomistajilla ja jatkojalostajilla on joustopakkauksista ja kuinka pakkausten ostopäätökset syntyvät monitahoisessa liikeympäristössä. Työn teoreettinen viitekehys jaettiin kahteen osaan. Asiakasodotuksia lähestyttiin tutkimalla eri palvelu- ja tuotelaadun ulottuvuuksia, ja teollisuuden ostokäyttäytymistä tutkittiin organisaatioiden ostokäyttämistä kuvaavien mallien avulla. Työn empiirisessä osuudessa käytettiin laadullista tutkimusmenetelmää käsittäen asiakashaastatteluja lähinnä Yhdysvalloissa. Haastateltavat yritykset koostuivat maailman johtavista kuluttajatuotteita valmistavista yrityksistä sekä jatkojalostajista. Tutkimustulosten mukaan odotukset pakkauksista liittyvät lähinnä tuotteen suojaamiseen sekä myynnin edistämiseen. Pääodotuksina on myös saada mahdollisimman edullisia papereita, mahdollisimman hyvillä barrier- ja paino-ominaisuuksilla. Tutkimustulokset osoittavat myös, että paperiyhtiöt ovat epäonnistuneet tekemään itseään tunnetuksi teollisuudelle ja heidän odotetaan olevan tulevaisuudessa aggressiivisempia ja innovatiivisempia. Tuotemerkkienomistajat ostavat pakkaukset ja pakkausmateriaalit normaalisti mieluiten jatkojalostajiensa kautta, mutta silti he toivovat yhteistyötä paperintoimittajien kanssa kunhan vain myös jatkojalostajat sisällytetään toimintaan mukaan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkimuksen tarkoituksensa oli luoda kokonaiskuva strategian toimeenpanoprosessista ja tuoda esiin case –yrityksen strategian toimeenpanon haasteet. Case –yritys toimii tietoliikennepalvelujen toimialalla, joka on ollut jatkuvassa muutoksessa. Yritys käynnisti strategiaprosessin vuonna 2002, jonka seurauksena liiketoiminnan painopistettä muutettiin palveluliiketoimintaan. Strategian toimeenpano ei sujunut haasteitta. Yritys on käynnistämässä uutta strategiaprosessia. Jotta edellisen strategian toimeenpanon ongelmat vältettäisiin, haluttiin tutkia, mikä on case –yrityksen strategian toimeenpanon taso tällä hetkellä ja tunnistaa case -yrityksen strategian toimeenpanemisen kehittämiskohdat. Tutkimus oli luonteeltaan kvalitatiivinen case –tutkimus, joka toteutettiin teemahaastatteluin. Tulokset osoittivat, että case –yrityksessä strategian toimeenpanoa voidaan kehittää erityisesti selkeyttämällä visio, lisäämällä johtajuutta ja visionäärisyyttä. Strategian toimeenpanossa johdolta vaaditaan myyntitaitoja: selkeää päämäärää, viestintää, luottamuksen tunteen luomista ja herkkyyttä kuunnella henkilöstön tuntoja. Johdon on itse omalla esimerkillään tehtävä tämä myyntityö. Hyvä visio poistaa muutosvastarintaa ja ohjaa oikeisiin päätöksiin. Ilman hyvää visiota, strategiasta voi tulla toimeenpanokelvoton. Strateginen johtaminen jatkuvana oppimisprosessina antaa hyvät mahdollisuudet tunnistaa toimintaympäristön muutokset. Strategiaprosessi kasvattaa koko yrityksen visionäärisyyttä samalla sitouttaen strategian toimeenpanoon. Lisäksi strategiaprosessi auttaa luomaan yritykseen joustavan oppivan organisaation kulttuurin, joka on edellytys kilpailukyvyn säilymiseen muuttuvassa toimintaympäristössä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deflection compensation of flexible boom structures in robot positioning is usually done using tables containing the magnitude of the deflection with inverse kinematics solutions of a rigid structure. The number of table values increases greatly if the working area of the boom is large and the required positioning accuracy is high. The inverse kinematics problems are very nonlinear, and if the structure is redundant, in some cases it cannot be solved in a closed form. If the structural flexibility of the manipulator arms is taken into account, the problem is almost impossible to solve using analytical methods. Neural networks offer a possibility to approximate any linear or nonlinear function. This study presents four different methods of using neural networks in the static deflection compensation and inverse kinematics solution of a flexible hydraulically driven manipulator. The training information required for training neural networks is obtained by employing a simulation model that includes elasticity characteristics. The functionality of the presented methods is tested based on the simulated and measured results of positioning accuracy. The simulated positioning accuracy is tested in 25 separate coordinate points. For each point, the positioning is tested with five different mass loads. The mean positioning error of a manipulator decreased from 31.9 mm to 4.1 mm in the test points. This accuracy enables the use of flexible manipulators in the positioning of larger objects. The measured positioning accuracy is tested in 9 separate points using three different mass loads. The mean positioning error decreased from 10.6 mm to 4.7 mm and the maximum error from 27.5 mm to 11.0 mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical activity (PA) is an important field of healthcare research internationally and within Finland. As technology devices and services penetrate deeper levels within society, the need for studying the usefulness for PA turns vital. We started this research work by reviewing literature consisting of two hundred research journals, all of which have found technology to significantly improve an individual’s ability to get motivation and achieve officially recommended levels of physical activity, like the 10000 steps a day, being tracked with the help of pedometers. Physical activity recommendations require sustained encouragement, consistent performance in order to achieve the long term benefits. We surveyed within the city of Turku, how the motivation levels and thirty three other criterions encompassing technology awareness, adoption and usage attitudes are impacted. Our aim was to know the factors responsible for achieving consistent growth in activity levels within the individuals and focus groups, as well as to determine the causes of failures and for collecting user experience feedback. The survey results were quite interesting and contain impeccable information for this field. While the focus groups confirmed the theory established by past studies within our literature review, it also establishes our research propositions that ict tools and services have provided and can further add higher benefits and value to individuals in tracking and maintain their activity levels consistently for longer time durations. This thesis includes two new models which dictate technology and physical activity adoption patterns based on four easy to evaluate criterions, thereby helping the healthcare providers to recommend improvements and address issues with an easy rule based approach. This research work provides vital clues on technology based healthcare objectives and achievement of standard PA recommendations by people within Turku and nearby regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a modern dynamic environment organizations are facing new requirements for success and competitive advantage. This also sets new requirements for leaders. The term of ambidexterity is used in relation with organizations that are able to manage short-term efficiency and long-term innovation simultaneously. Ambidextrous leaders have the same capability at an individual level. They are able to balance between efficiency and flexibility. This study examined the confrontation of these two competing concepts in the leadership perspective. The aim of the study was to understand this recently arisen concept and its antecedents and examine what is currently known about ambidextrous leadership. This was a case study with data collected through theme interviews in a result orientated customer centre organization that has a cultural change at hand when it comes to leadership and empowerment. Organization wants to be efficient and flexible at the same time (a.k.a. ambidextrous) and that requires new type of leadership. In this study the aim was to describe the capabilities and criteria for ambidextrous leader and examine the leadership roles related to ambidextrous leadership in different hierarchical levels. The case organization had also created systematic means to support this cultural change and the effects of the process related to leadership were studied. This study showed that the area is yet widely unexplored and contradictory views are presented. This study contributes to the deprivation of study of ambidexterity in leadership and individuals. The study presents a description of ambidextrous leadership and describes the capabilities of ambidextrous leader. Ambidextrous leaders are able to make cognitive decisions between their leadership style according to situation that requires either leadership related to efficiency such as transactional leadership or leadership related to flexibility such as transformational leadership. Their leadership style supports both short-term and long-term goals. This study also shows that the role of top management is vital and operational leaders rely on their example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone strain plays a major role as the activation signal for the bone (re)modeling process, which is vital for keeping bones healthy. Maintaining high bone mineral density reduces the chances of fracture in the event of an accident. Numerous studies have shown that bones can be strengthened with physical exercise. Several hypotheses have asserted that a stronger osteogenic (bone producing) effect results from dynamic exercise than from static exercise. These previous studies are based on short-term empirical research, which provide the motivation for justifying the experimental results with a solid mathematical background. The computer simulation techniques utilized in this work allow for non-invasive bone strain estimation during physical activity at any bone site within the human skeleton. All models presented in the study are threedimensional and actuated by muscle models to replicate the real conditions accurately. The objective of this work is to determine and present loading-induced bone strain values resulting from physical activity. It includes a comparison of strain resulting from four different gym exercises (knee flexion, knee extension, leg press, and squat) and walking, with the results reported for walking and jogging obtained from in-vivo measurements described in the literature. The objective is realized primarily by carrying out flexible multibody dynamics computer simulations. The dissertation combines the knowledge of finite element analysis and multibody simulations with experimental data and information available from medical field literature. Measured subject-specific motion data was coupled with forward dynamics simulation to provide natural skeletal movement. Bone geometries were defined using a reverse engineering approach based on medical imaging techniques. Both computed tomography and magnetic resonance imaging were utilized to explore modeling differences. The predicted tibia bone strains during walking show good agreement with invivo studies found in the literature. Strain measurements were not available for gym exercises; therefore, the strain results could not be validated. However, the values seem reasonable when compared to available walking and running invivo strain measurements. The results can be used for exercise equipment design aimed at strengthening the bones as well as the muscles during workout. Clinical applications in post fracture recovery exercising programs could also be the target. In addition, the methodology introduced in this study, can be applied to investigate the effect of weightlessness on astronauts, who often suffer bone loss after long time spent in the outer space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tightening competition and increasing dynamism have created an emerging need for flexible asset management. This means that the changes of market demand should be responded to with adjustments in the amount of assets tied to the balance sheets of companies. On the other hand, industrial maintenance has recently experienced drastic changes, which have led to an increase in the number of maintenance networks (consisting of customer companies that buy maintenance services, as well as various supplier companies) and inter-organizational partnerships. However, the research on maintenance networks has not followed the changes in the industry. Instead, there is a growing need for new ways of collaboration between partnering companies to enhance the competitiveness of the whole maintenance network. In addition, it is more and more common for companies to pursue lean operations in their businesses. This thesis shows how flexible asset management can increase the profitability of maintenance companies and networks under dynamic operating conditions, and how the additional value can then be shared between the network partners. Firstly, I have conducted a systematic literature review to identify what kind of requirements for asset management models are set by the increasing dynamism. Then I have responded to these requirements by constructing an analytical model for flexible asset management, linking asset management to the profitability and financial state of a company. The thesis uses the model to show how flexible asset management can increase profitability in maintenance companies and networks, and how the created value can be shared in the networks to reach a win-win situation. The research indicates that the existing models for asset management are heterogeneous by nature due to the various definitions of ‘asset management’. I conclude that there is a need for practical asset management models which address assets comprehensively with an inter-organizational, strategic view. The comprehensive perspective, taking all kinds of asset types into account, is needed to integrate the research on asset management with the strategic management of companies and networks. I will show that maintenance companies can improve their profitability by increasing the flexibility of their assets. In maintenance networks, reorganizing the ownership of the assets among the different network partners can create additional value. Finally, I will introduce flexible asset management contracts for maintenance networks. These contracts address the value sharing related to reorganizing the ownership of assets according to the principles of win-win situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.