86 resultados para profitability estimation
Resumo:
Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.
Resumo:
This study investigates futures market efficiency and optimal hedge ratio estimation. First, cointegration between spot and futures prices is studied using Johansen method, with two different model specifications. If prices are found cointegrated, restrictions on cointegrating vector and adjustment coefficients are imposed, to account for unbiasedness, weak exogeneity and prediction hypothesis. Second, optimal hedge ratios are estimated using static OLS, and time-varying DVEC and CCC models. In-sample and out-of-sample results for one, two and five period ahead are reported. The futures used in thesis are RTS index, EUR/RUB exchange rate and Brent oil, traded in Futures and options on RTS.(FORTS) For in-sample period, data points were acquired from start of trading of each futures contract, RTS index from August 2005, EUR/RUB exchange rate March 2009 and Brent oil October 2008, lasting till end of May 2011. Out-of-sample period covers start of June 2011, till end of December 2011. Our results indicate that all three asset pairs, spot and futures, are cointegrated. We found RTS index futures to be unbiased predictor of spot price, mixed evidence for exchange rate, and for Brent oil futures unbiasedness was not supported. Weak exogeneity results for all pairs indicated spot price to lead in price discovery process. Prediction hypothesis, unbiasedness and weak exogeneity of futures, was rejected for all asset pairs. Variance reduction results varied between assets, in-sample in range of 40-85 percent and out-of sample in range of 40-96 percent. Differences between models were found small, except for Brent oil in which OLS clearly dominated. Out-of-sample results indicated exceptionally high variance reduction for RTS index, approximately 95 percent.
Resumo:
Target company of this study is a large machinery company, which is, inter alia, engaged in energy and pulp engineering, procurement and construction management (EPCM) supply business. The main objective of this study was to develop cost estimation of the target company by providing more accurate, reliable and up-to-date information through enterprise resource planning (ERP) system. Another objective was to find cost-effective methods to collect total cost of ownership information to support more informed supplier selection decision making. This study is primarily action-oriented, but also constructive, and it can be divided in two sections: theoretical literature review and empirical study on the abovementioned part of the target company’s business. Development of information collection is, in addition to literature review, based on nearly 30 qualitative interviews of employees at various organizational units, functions and levels at the target company. At the core of development was to make initial data more accurate, reliable and available, a necessary prerequisite for informed use of the information. Certain development suggestions and paths were presented in order to regain confidence in ERP system as information source by reorganizing work breakdown structure and by complementing mere cost information with quantitative, technical and scope information. Several methods to use the information ever more effectively were also discussed. While implementation of the development suggestions outreached the scope of this study, it was forwarded in test environment and interest groups.
Resumo:
The target of the thesis is to improve product profitability control in continuous IT-services. Accurate product cost accounting and correctly allocated revenues are a necessity for good product profitability control. The focus of the study is on costs and revenues that are not traced directly to services. The thesis is focused on revenue allocations as revenue allocation methods have not been used in the case company before. In order to achieve the target revenue allocation methods, which improve the product profitability accounting and control, are presented. The research methods used in the thesis are literature review and empirical case study. The research approach is constructive. The theoretical part is composed of literature and articles that create a base for the empirical part. Internal interviews describe the current situation in the company and based on it development actions are planned. The part of the empirical case study is seen mostly in the limitations as the research is limited to concern only one department in the company. Problems in the revenue tracing are caused by customer specific services and lack of service definitions because of which the revenues are not traced correctly. Methods to allocate revenues are presented in the thesis and stand-alone revenue allocation method is the most suitable one because it is fair and it can be modified. Approximate product profitability analysis is done in the thesis and the results of it indicate that some services are profitable and some unprofitable.
Resumo:
Bone strain plays a major role as the activation signal for the bone (re)modeling process, which is vital for keeping bones healthy. Maintaining high bone mineral density reduces the chances of fracture in the event of an accident. Numerous studies have shown that bones can be strengthened with physical exercise. Several hypotheses have asserted that a stronger osteogenic (bone producing) effect results from dynamic exercise than from static exercise. These previous studies are based on short-term empirical research, which provide the motivation for justifying the experimental results with a solid mathematical background. The computer simulation techniques utilized in this work allow for non-invasive bone strain estimation during physical activity at any bone site within the human skeleton. All models presented in the study are threedimensional and actuated by muscle models to replicate the real conditions accurately. The objective of this work is to determine and present loading-induced bone strain values resulting from physical activity. It includes a comparison of strain resulting from four different gym exercises (knee flexion, knee extension, leg press, and squat) and walking, with the results reported for walking and jogging obtained from in-vivo measurements described in the literature. The objective is realized primarily by carrying out flexible multibody dynamics computer simulations. The dissertation combines the knowledge of finite element analysis and multibody simulations with experimental data and information available from medical field literature. Measured subject-specific motion data was coupled with forward dynamics simulation to provide natural skeletal movement. Bone geometries were defined using a reverse engineering approach based on medical imaging techniques. Both computed tomography and magnetic resonance imaging were utilized to explore modeling differences. The predicted tibia bone strains during walking show good agreement with invivo studies found in the literature. Strain measurements were not available for gym exercises; therefore, the strain results could not be validated. However, the values seem reasonable when compared to available walking and running invivo strain measurements. The results can be used for exercise equipment design aimed at strengthening the bones as well as the muscles during workout. Clinical applications in post fracture recovery exercising programs could also be the target. In addition, the methodology introduced in this study, can be applied to investigate the effect of weightlessness on astronauts, who often suffer bone loss after long time spent in the outer space.
Resumo:
The objective of this thesis is to study the role of received advance payments in working capital management by creating a new measurement and to study the relationship between advance payments and profitability. The study has been conducted using narrative literature review and quantitative research methods. The research was made analyzing 108 companies listed in Helsinki Stock Exchange. The results indicate that 68 % of the studied companies are receiving advance payments and the average cycle time for received advance payments is 13 days. A new key figure is created to include received advance payments into the calculation of working capital. Received advance payments shorten the working capital cycle, by 13 days, when they are used in the calculation. The role of advance payments is not as significant as the role of receivables and inventories but advance payments may have a larger role than payables if the company is receiving noticeable amounts of advance payments. There are three branches where companies are receiving more advance payments than average companies. The branches are project business and ICT and publishing sectors. There is a negative correlation between profitability and advance payments based on the results of this study.
Resumo:
Parameter estimation still remains a challenge in many important applications. There is a need to develop methods that utilize achievements in modern computational systems with growing capabilities. Owing to this fact different kinds of Evolutionary Algorithms are becoming an especially perspective field of research. The main aim of this thesis is to explore theoretical aspects of a specific type of Evolutionary Algorithms class, the Differential Evolution (DE) method, and implement this algorithm as codes capable to solve a large range of problems. Matlab, a numerical computing environment provided by MathWorks inc., has been utilized for this purpose. Our implementation empirically demonstrates the benefits of a stochastic optimizers with respect to deterministic optimizers in case of stochastic and chaotic problems. Furthermore, the advanced features of Differential Evolution are discussed as well as taken into account in the Matlab realization. Test "toycase" examples are presented in order to show advantages and disadvantages caused by additional aspects involved in extensions of the basic algorithm. Another aim of this paper is to apply the DE approach to the parameter estimation problem of the system exhibiting chaotic behavior, where the well-known Lorenz system with specific set of parameter values is taken as an example. Finally, the DE approach for estimation of chaotic dynamics is compared to the Ensemble prediction and parameter estimation system (EPPES) approach which was recently proposed as a possible solution for similar problems.
Resumo:
In this doctoral thesis, methods to estimate the expected power cycling life of power semiconductor modules based on chip temperature modeling are developed. Frequency converters operate under dynamic loads in most electric drives. The varying loads cause thermal expansion and contraction, which stresses the internal boundaries between the material layers in the power module. Eventually, the stress wears out the semiconductor modules. The wear-out cannot be detected by traditional temperature or current measurements inside the frequency converter. Therefore, it is important to develop a method to predict the end of the converter lifetime. The thesis concentrates on power-cycling-related failures of insulated gate bipolar transistors. Two types of power modules are discussed: a direct bonded copper (DBC) sandwich structure with and without a baseplate. Most common failure mechanisms are reviewed, and methods to improve the power cycling lifetime of the power modules are presented. Power cycling curves are determined for a module with a lead-free solder by accelerated power cycling tests. A lifetime model is selected and the parameters are updated based on the power cycling test results. According to the measurements, the factor of improvement in the power cycling lifetime of modern IGBT power modules is greater than 10 during the last decade. Also, it is noticed that a 10 C increase in the chip temperature cycle amplitude decreases the lifetime by 40%. A thermal model for the chip temperature estimation is developed. The model is based on power loss estimation of the chip from the output current of the frequency converter. The model is verified with a purpose-built test equipment, which allows simultaneous measurement and simulation of the chip temperature with an arbitrary load waveform. The measurement system is shown to be convenient for studying the thermal behavior of the chip. It is found that the thermal model has a 5 C accuracy in the temperature estimation. The temperature cycles that the power semiconductor chip has experienced are counted by the rainflow algorithm. The counted cycles are compared with the experimentally verified power cycling curves to estimate the life consumption based on the mission profile of the drive. The methods are validated by the lifetime estimation of a power module in a direct-driven wind turbine. The estimated lifetime of the IGBT power module in a direct-driven wind turbine is 15 000 years, if the turbine is located in south-eastern Finland.
Resumo:
The objective of this study was to find out the factors that affect customer profitability in the not-for-profit case company. The customer profitability was examined in two different segments of the customer base. The effects that price, cost and the amount of services provided have on the profit margin were studied. The distribution of profitability among the customers and the effect of certain characteristics, such as size of the customer measured in services purchased, on the profitability were analyzed. The theoretical framework was built around customer profitability and the use of customer profitability information in a not-for-profit organization. The present use of customer profitability information and the possibilities of using the results of this research in the case company were presented. Quantitative research methods were used in the empirical part of the study. The results indicate that the two customer segments have differences in their buying behaviors which affect the profitability and thus the measures taken to improve the profitability should be considered with the different characteristics of the customers in mind. Finally the limitations of the study were discussed as possible further research topics.
Resumo:
Energian kulutus ja siitä aiheutuvat haittavaikutukset lisääntyvät globaalisti, minkä johdosta tarve uusille toimintamalleille ja ajatustavoille on merkittävä. Yksi mahdollisuus vastata energian kulutuksen kasvuun on lisätä energiatehokkuutta. Energiatehokkuudella voidaan vähentää energian käytöstä aiheutuvia päästöjä kustannustehokkaasti. Tässä työssä tarkastellaan energiatehokkuutta ja sen lisäämistä alueellisella tasolla. Työssä käsitellään menetelmiä ja keinoja alueellisen energiatehokkuuden lisäämiseksi esimerkiksi kaupungeissa ja yhteisöissä. Työssä esitetään alueellisen energiatehokkuuden arviointimalli, jolla voidaan määrittää alueellisen energiatehokkuuden toteutumista ja energiaratkaisujen kannattavuutta ympäristön kannalta. Malli sisältää matemaattisesti määritettäviä tunnuslukuja, jotka kuvaavat ympäristövaikutuksia. Mallia sovelletaan Lohjan alue-tarkasteluun, jossa mallin pohjalta esitetään vaihtoehtoja energiatehokkuuden lisäämiseksi. Voidaan todeta, että arviointimalli on käyttökelpoinen ja sillä voidaan havainnol-listaa alueellista energian käyttöä ja sen energiatehokkuutta. On kuitenkin huomattava, että malli huomioi lähinnä vain ympäristövaikutuksia ja sisältää virheläh-teitä johtuen esimerkiksi käytettävissä olevan tiedon määrästä.
Resumo:
This thesis presents a set of methods and models for estimation of iron and slag flows in the blast furnace hearth and taphole. The main focus was put on predicting taphole flow patterns and estimating the effects of various taphole conditions on the drainage behavior of the blast furnace hearth. All models were based on a general understanding of the typical tap cycle of an industrial blast furnace. Some of the models were evaluated on short-term process data from the reference furnace. A computational fluid dynamics (CFD) model was built and applied to simulate the complicated hearth flows and thus to predict the regions of the hearth exerted to erosion under various operating conditions. Key boundary variables of the CFD model were provided by a simplified drainage model based on the first principles. By examining the evolutions of liquid outflow rates measured from the furnace studied, the drainage model was improved to include the effects of taphole diameter and length. The estimated slag delays showed good agreement with the observed ones. The liquid flows in the taphole were further studied using two different models and the results of both models indicated that it is more likely that separated flow of iron and slag occurs in the taphole when the liquid outflow rates are comparable during tapping. The drainage process was simulated with an integrated model based on an overall balance analysis: The high in-furnace overpressure can compensate for the resistances induced by the liquid flows in the hearth and through the taphole. Finally, a recently developed multiphase CFD model including interfacial forces between immiscible liquids was developed and both the actual iron-slag system and a water-oil system in laboratory scale were simulated. The model was demonstrated to be a useful tool for simulating hearth flows for gaining understanding of the complex phenomena in the drainage of the blast furnace.
Resumo:
State-of-the-art predictions of atmospheric states rely on large-scale numerical models of chaotic systems. This dissertation studies numerical methods for state and parameter estimation in such systems. The motivation comes from weather and climate models and a methodological perspective is adopted. The dissertation comprises three sections: state estimation, parameter estimation and chemical data assimilation with real atmospheric satellite data. In the state estimation part of this dissertation, a new filtering technique based on a combination of ensemble and variational Kalman filtering approaches, is presented, experimented and discussed. This new filter is developed for large-scale Kalman filtering applications. In the parameter estimation part, three different techniques for parameter estimation in chaotic systems are considered. The methods are studied using the parameterized Lorenz 95 system, which is a benchmark model for data assimilation. In addition, a dilemma related to the uniqueness of weather and climate model closure parameters is discussed. In the data-oriented part of this dissertation, data from the Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite instrument are considered and an alternative algorithm to retrieve atmospheric parameters from the measurements is presented. The validation study presents first global comparisons between two unique satellite-borne datasets of vertical profiles of nitrogen trioxide (NO3), retrieved using GOMOS and Stratospheric Aerosol and Gas Experiment III (SAGE III) satellite instruments. The GOMOS NO3 observations are also considered in a chemical state estimation study in order to retrieve stratospheric temperature profiles. The main result of this dissertation is the consideration of likelihood calculations via Kalman filtering outputs. The concept has previously been used together with stochastic differential equations and in time series analysis. In this work, the concept is applied to chaotic dynamical systems and used together with Markov chain Monte Carlo (MCMC) methods for statistical analysis. In particular, this methodology is advocated for use in numerical weather prediction (NWP) and climate model applications. In addition, the concept is shown to be useful in estimating the filter-specific parameters related, e.g., to model error covariance matrix parameters.
Resumo:
Objective of this master’s thesis is to create an investment calculation model, which makes it possible to determine if the ski resort business can be profitable. The ultimate goal is to create a description with the help of theoretical knowledge, interviews and investment calculation model, how the operation of ski resort is possible to be profitable and what are the critical success factors for achieving this goal. Thesis is carried out as qualitative research, which is supported by the necessary constructive information utilizing calculations. The client company has provided valuable insights and material for this thesis. Theoretical report examines the steps of developing a business plan, investment components and methods as well as sensitivity analysis. The theoretical part is based on the articles, textbooks, interviews and researches. The empirical part of the thesis is assembled by benchmarking other same size Finnish ski resorts, conducting interviews and using investment calculation model. The empirical part provides comprehensive information about ski resort industry, the future of the project, the business plan and the profitability calculations. As the result of this thesis the investment calculation model, which makes it possible to simulate different scenarios for ski resort project, was formed. The model was used to create a picture in which kind of scenario the ski resort business would be profitable and what are the critical success factors in achieving this aim.
Resumo:
The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.