81 resultados para Forecasting methods


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Demand forecasting is one of the fundamental managerial tasks. Most companies do not know their future demands, so they have to make plans based on demand forecasts. The literature offers many methods and approaches for producing forecasts. Former literature points out that even though many forecasting methods and approaches are available, selecting a suitable approach and implementing and managing it is a complex cross-functional matter. However, it’s relatively rare that researches are focused on the differences in forecasting between consumer and industrial companies. The aim of this thesis is to investigate the potential of improving demand forecasting practices for B2B and B2C sectors in the global supply chains. Business to business (B2B) sector produces products for other manufacturing companies. On the other hand, consumer (B2C) sector provides goods for individual buyers. Usually industrial sector have a lower number of customers and closer relationships with them. The research questions of this thesis are: 1) What are the main differences and similarities in demand planning between B2B and B2C sectors? 2) How the forecast performance for industrial and consumer companies can be improved? The main methodological approach in this study is design science, where the main objective is to develop tentative solutions to real-life problems. The research data has been collected from a case company. Evaluation and improving in organizing demand forecasting can be found in three interlinked areas: 1) demand planning operational environment, 2) demand forecasting techniques, 3) demand information sharing scenarios. In this research current B2B and B2C demand practices are presented with further comparison between those two sectors. It was found that B2B and B2C sectors have significant differences in demand practices. This research partly filled the theoretical gap in understanding the difference in forecasting in consumer and industrial sectors. In all these areas, examples of managerial problems are described, and approaches for mitigating these problems are outlined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tässä diplomityössä tutkitaan miten kysyntää voidaan ennustaa erityyppisille tuotteille. Työssä esitellään miten funktionaaliset ja innovatiiviset tuotteet poikkeavat toisistaan sekä miten niiden toimitusketjut eroavat. Työssä esitellään kvantitatiivisia ja kvalitatiivisia menetelmiä kysynnän ennustamiseen erityyppisille tuotteille ja sitä kuinka ennustemenetelmä tulisi tuotteille valita. Työssä käydään läpi ennusteprosessi, ennusteiden suorituskyvyn mittaaminen ja ennustamisen hyödyt ja sudenkuopat. Työn käytännönosuus on tehty kohdeyritykselle, joka toimii terveydenhuollonalan maahantuojana ja tukkuyrityksenä. Työn tarkoituksena on luoda yritykselle ennusteenvalintatyökalu, jonka avulla voidaan valita yrityksen toisistaan poikkeaville tuotteille tarpeeseen sopivia kysynnän ennusteita. Työssä luodaan ennusteet neljälle yrityksen toisistaan poikkeavalle tuoteryhmälle, joista jokaisella on erilainen tarve ennusteen käytölle. Jokaisesta tuoteryhmästä on valittu yhdestä kolmeen tuotetta, joille luodaan ennusteet käyttäen yhtä tai kahta erilaista menetelmää ja niiden suoriutumista verrataan yksinkertaisimpaan menetelmään, naiiviin menetelmän tuloksiin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Suurin osa Suomen vuokrataloyhtiöistä perustettiin 60- ja 70-luvuilla. Tuolloin oli selkeä kuva asuntojen tarpeesta, sijainneista, koosta ja varustetasosta. Asuntotuotantoon kohdistetut rahoitusmuodot koettiin onnistuneiksi ja toimiviksi. Toimintaympäristön muutokset ovat tänään huomattavasti nopeampia kuin tutkimuksen kohteena olevan yhtiön perustamisen aikaan, yli neljäkymmentä vuotta sitten. Vuokrataloyhtiön on pystyttävä varautumaan yllättäviin muutoksiin ja pyrkiä tunnistamaan muuttuvat elementit. Tämä diplomityö pyrkii selvittämään, mitä vaihtoehtoisia tulevaisuudenkuvia on olemassa. Työ perustuu samalla tulevaisuudentutkimuksen kirjallisuusteoriaan ja sen peruslähtökohtiin. Empiirinen osuus perustuu tutkittavan vuokrataloyhtiön historiaan, nykyisyyteen ja tulevaisuuteen tehtyjen ratkaisujen dokumentteihin. Vuokrataloyhtiön ympäristö on täynnä tunnistettavia ominaisuuksia, verkostoja ja rakenteellisia aukkoja. Ympäristöstä tulee osata poimia ne asiat, joiden perusteella eri skenaario- ja ennakointimenetelmät laaditaan. Ennakointi ei ole ennustamista. Skenaario - ja ennakointimenetelmien hyödyntäminen on avoin prosessi, joka sisältää tutkimuskysymyksiä, lähtökohtia, joita tarkennetaan prosessin edetessä. Vuokrataloyhtiön on osattava hyödyntää nämä menetelmät osana strategian suunnitteluaan, jotta se pärjää myös tulevaisuudessa muuttuvassa toimintaympäristössään.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diplomityön tavoitteena on tutkia kysyntäennusteiden hyödyntämistä valmistavan teollisuusyrityksen tuotannossa ja varastonhallinnassa. Työn alussa esitellään kysynnän tuntemiseen ja ennustamiseen liittyvään teoriaan, jonka jälkeen tutkitaan teorian tarjoamia mahdollisuuksia linkittää kysyntäennusteet tuotannon ja varastonhallinnan avuksi. Työn empiria osassa kuvataan ensin Peikko Group Oy:n kysyntäennusteiden nykytilanne. Tämän jälkeen vertaillaan kahden eri lähestymistavan soveltuvuutta, joilla kohdeyritys voisi mahdollisesti rakentaa tuotannolle ja varastonhallinnalle tarpeellisia kysyntäennusteita päätöksenteon tueksi. Tuotannon kannalta työn keskeisin tulos on kysyntäennusteiden pohjalta muodostettu kuormaennuste ja varastonhallinnan kannalta tarvittavan ennustetarkkuuden määrittäminen, jotta ennusteita voitaisiin hyödyntää varastonohjausparametrien määrityksessä.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical weather prediction and climate simulation have been among the computationally most demanding applications of high performance computing eversince they were started in the 1950's. Since the 1980's, the most powerful computers have featured an ever larger number of processors. By the early 2000's, this number is often several thousand. An operational weather model must use all these processors in a highly coordinated fashion. The critical resource in running such models is not computation, but the amount of necessary communication between the processors. The communication capacity of parallel computers often fallsfar short of their computational power. The articles in this thesis cover fourteen years of research into how to harness thousands of processors on a single weather forecast or climate simulation, so that the application can benefit as much as possible from the power of parallel high performance computers. The resultsattained in these articles have already been widely applied, so that currently most of the organizations that carry out global weather forecasting or climate simulation anywhere in the world use methods introduced in them. Some further studies extend parallelization opportunities into other parts of the weather forecasting environment, in particular to data assimilation of satellite observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the research is to define practical profit which can be achieved using neural network methods as a prediction instrument. The thesis investigates the ability of neural networks to forecast future events. This capability is checked on the example of price prediction during intraday trading on stock market. The executed experiments show predictions of average 1, 2, 5 and 10 minutes’ prices based on data of one day and made by two different types of forecasting systems. These systems are based on the recurrent neural networks and back propagation neural nets. The precision of the predictions is controlled by the absolute error and the error of market direction. The economical effectiveness is estimated by a special trading system. In conclusion, the best structures of neural nets are tested with data of 31 days’ interval. The best results of the average percent of profit from one transaction (buying + selling) are 0.06668654, 0.188299453, 0.349854787 and 0.453178626, they were achieved for prediction periods 1, 2, 5 and 10 minutes. The investigation can be interesting for the investors who have access to a fast information channel with a possibility of every-minute data refreshment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity price forecasting has become an important area of research in the aftermath of the worldwide deregulation of the power industry that launched competitive electricity markets now embracing all market participants including generation and retail companies, transmission network providers, and market managers. Based on the needs of the market, a variety of approaches forecasting day-ahead electricity prices have been proposed over the last decades. However, most of the existing approaches are reasonably effective for normal range prices but disregard price spike events, which are caused by a number of complex factors and occur during periods of market stress. In the early research, price spikes were truncated before application of the forecasting model to reduce the influence of such observations on the estimation of the model parameters; otherwise, a very large forecast error would be generated on price spike occasions. Electricity price spikes, however, are significant for energy market participants to stay competitive in a market. Accurate price spike forecasting is important for generation companies to strategically bid into the market and to optimally manage their assets; for retailer companies, since they cannot pass the spikes onto final customers, and finally, for market managers to provide better management and planning for the energy market. This doctoral thesis aims at deriving a methodology able to accurately predict not only the day-ahead electricity prices within the normal range but also the price spikes. The Finnish day-ahead energy market of Nord Pool Spot is selected as the case market, and its structure is studied in detail. It is almost universally agreed in the forecasting literature that no single method is best in every situation. Since the real-world problems are often complex in nature, no single model is able to capture different patterns equally well. Therefore, a hybrid methodology that enhances the modeling capabilities appears to be a possibly productive strategy for practical use when electricity prices are predicted. The price forecasting methodology is proposed through a hybrid model applied to the price forecasting in the Finnish day-ahead energy market. The iterative search procedure employed within the methodology is developed to tune the model parameters and select the optimal input set of the explanatory variables. The numerical studies show that the proposed methodology has more accurate behavior than all other examined methods most recently applied to case studies of energy markets in different countries. The obtained results can be considered as providing extensive and useful information for participants of the day-ahead energy market, who have limited and uncertain information for price prediction to set up an optimal short-term operation portfolio. Although the focus of this work is primarily on the Finnish price area of Nord Pool Spot, given the result of this work, it is very likely that the same methodology will give good results when forecasting the prices on energy markets of other countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The desire to create a statistical or mathematical model, which would allow predicting the future changes in stock prices, was born many years ago. Economists and mathematicians are trying to solve this task by applying statistical analysis and physical laws, but there are still no satisfactory results. The main reason for this is that a stock exchange is a non-stationary, unstable and complex system, which is influenced by many factors. In this thesis the New York Stock Exchange was considered as the system to be explored. A topological analysis, basic statistical tools and singular value decomposition were conducted for understanding the behavior of the market. Two methods for normalization of initial daily closure prices by Dow Jones and S&P500 were introduced and applied for further analysis. As a result, some unexpected features were identified, such as a shape of distribution of correlation matrix, a bulk of which is shifted to the right hand side with respect to zero. Also non-ergodicity of NYSE was confirmed graphically. It was shown, that singular vectors differ from each other by a constant factor. There are for certain results no clear conclusions from this work, but it creates a good basis for the further analysis of market topology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research concerns different statistical methods that assist to increase the demand forecasting accuracy of company X’s forecasting model. Current forecasting process was analyzed in details. As a result, graphical scheme of logical algorithm was developed. Based on the analysis of the algorithm and forecasting errors, all the potential directions for model future improvements in context of its accuracy were gathered into the complete list. Three improvement directions were chosen for further practical research, on their basis, three test models were created and verified. Novelty of this work lies in the methodological approach of the original analysis of the model, which identified its critical points, as well as the uniqueness of the developed test models. Results of the study formed the basis of the grant of the Government of St. Petersburg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tiivistelmä: Harvennusmenetelmien vertailu ojitetun turvemaan männikössä. Simulointitutkimus

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary