25 resultados para insulina lispro
Resumo:
Background. Urotensin II (UII) is a potent vasoconstrictor peptide, which signals through a G-protein coupled receptor (GPCR) known as GPR14 or urotensin receptor (UTR). UII exerts a broad spectrum of actions in several systems such as vascular cell, heart muscle or pancreas, where it inhibits insulin release. Objective. Given the reported role of UII in insulin secretion, we have performed a genetic association analysis of the UTS2 gene and flanking regions with biochemical parameters related to insulin resistance (fasting glucose, glucose 2 hours after a glucose overload, fasting insulin and insulin resistance estimated as HOMA). Results and Conclusions. We have identified several polymorphisms associated with the analysed clinical traits, not only at the UTS2 gene, but also in thePER3 gene, located upstream from UTS2. Our results are compatible with a role for UII in glucose homeostasis and diabetes although we cannot rule out the possibility that PER3 gene may underlie the reported associations.
Resumo:
BACKGROUND: The elongase of long chain fatty acids family 6 (ELOVL6) is an enzyme that specifically catalyzes the elongation of saturated and monounsaturated fatty acids with 12, 14 and 16 carbons. ELOVL6 is expressed in lipogenic tissues and it is regulated by sterol regulatory element binding protein 1 (SREBP-1). OBJECTIVE: We investigated whether ELOVL6 genetic variation is associated with insulin sensitivity in a population from southern Spain. DESIGN: We undertook a prospective, population-based study collecting phenotypic, metabolic, nutritional and genetic information. Measurements were made of weight and height and the body mass index (BMI) was calculated. Insulin resistance was measured by homeostasis model assessment. The type of dietary fat was assessed from samples of cooking oil taken from the participants' kitchens and analyzed by gas chromatography. Five SNPs of the ELOVL6 gene were analyzed by SNPlex. RESULTS: Carriers of the minor alleles of the SNPs rs9997926 and rs6824447 had a lower risk of having high HOMA_IR, whereas carriers of the minor allele rs17041272 had a higher risk of being insulin resistant. An interaction was detected between the rs6824447 polymorphism and the intake of oil in relation with insulin resistance, such that carriers of this minor allele who consumed sunflower oil had lower HOMA_IR than those who did not have this allele (P = 0.001). CONCLUSIONS: Genetic variations in the ELOVL6 gene were associated with insulin sensitivity in this population-based study.
Resumo:
Glucose control is the cornerstone of Diabetes Mellitus (DM) treatment. Although self-regulation using capillary glycemia (SRCG) still remains the best procedure in clinical practice, continuous glucose monitoring systems (CGM) offer the possibility of continuous and dynamic assessment of interstitial glucose concentration. CGM systems have the potential to improve glycemic control while decreasing the incidence of hypoglycemia but the efficiency, compared with SRCG, is still debated. CGM systems have the greatest potential value in patients with hypoglycemic unawareness and in controlling daily fluctuations in blood glucose. The implementation of continuous monitoring in the standard clinical setting has not yet been established but a new generation of open and close loop subcutaneous insulin infusion devices are emerging making insulin treatment and glycemic control more reliable.
Resumo:
In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of beta-cells has been considered to be the first event directly responsible for beta-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, beta-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured beta-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in beta-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable beta-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in beta-cell proliferation and beta-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-gamma antibody, induced a near-total recovery of beta-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on beta-cell regeneration and on beta-cell apoptosis.
Resumo:
CONTEXT GH treatment is effective in children born small for gestational age (SGA); however, its effectiveness and safety in very young SGA children is unknown. OBJECTIVE The aim was to analyze the outcome of very young SGA children treated with GH and followed for 2 yr. The results after 24 months of treatment, compared with a control group without treatment during 12 months followed by 12 months of treatment, are shown. DESIGN We performed a multicenter, controlled, randomized, open trial. SETTINGS The pediatric endocrinology departments of 14 public hospitals in Spain participated in the study. PATIENTS Seventy-six children, aged 2-5 yr born SGA and without catch-up growth, were studied. INTERVENTION Children received GH at 0.06 mg/kg.d for 2 yr (group I) or were followed for 12 months with no treatment and then treated for 12 months (group II). MAIN OUTCOME MEASURES Age, general health status, pubertal stage, bone age, height, weight, biochemical and hormonal analyses, and adverse side effects were determined at biannual check-ups. RESULTS The mean height sd score gain for chronological age in children treated for 24 months (group I) was 2.10, whereas in those treated only during the last 12 months (group II) was 1.43. In both groups, children under 4 yr of age had the greatest gain in growth velocity. No significant acceleration of bone age or side effects related to treatment was seen. CONCLUSION Very young SGA children without spontaneous catch-up growth could benefit from GH treatment because growth was accelerated and no negative side effects were observed.
Resumo:
BACKGROUND. Transsexual persons afford a very suitable model to study the effect of sex steroids on uric acid metabolism. DESIGN. This was a prospective study to evaluate the uric acid levels and fractional excretion of uric acid (FEUA) in a cohort of 69 healthy transsexual persons, 22 male-to-female transsexuals (MFTs) and 47 female-to-male transsexuals (FMTs).The subjects were studied at baseline and 1 and 2 yr after starting cross-sex hormone treatment. RESULTS. The baseline levels of uric acid were higher in the MFT group.Compared with baseline, uric acid levels had fallen significantly after 1 yr of hormone therapy in the MFT group and had risen significantly in the FMT group. The baseline FEUA was greater in the FMT group. After 2 yr of cross-sex hormone therapy, the FEUA had increased in MFTs (P = 0.001) and fallen in FMTs (P = 0.004).In MFTs, the levels of uric acid at 2 yr were lower in those who had received higher doses of estrogens (P = 0.03),and the FEUA was higher (P = 0.04).The FEUA at 2 yr was associated with both the estrogen dose (P = 0.02) and the serum levels of estradiol-17beta (P =0.03).In MFTs, a correlation was found after 2 yr of therapy between the homeostasis model assessment of insulin resistance and the serum uric acid (r = 0.59; P = 0.01). CONCLUSIONS. Serum levels of uric acid and the FEUA are altered in transsexuals as a result of cross-sex hormone therapy.The results concerning the MFT group support the hypothesis that the lower levels of uric acid in women are due to estrogen-induced increases in FEUA.
Resumo:
Hyperuricaemia is one of the components of metabolic syndrome. Both oxidative stress and hyperinsulinism are important variables in the genesis of this syndrome and have a close association with uric acid (UA). We evaluated the effect of an oral glucose challenge on UA concentrations. The study included 656 persons aged 18 to 65 years. Glycaemia, insulin, UA and plasma proteins were measured at baseline and 120 min after an oral glucose tolerance test (OGTT). The baseline sample also included measurements of total cholesterol, triacylglycerol (TAG) and HDL-cholesterol. Insulin resistance was calculated with the homeostasis model assessment. UA levels were significantly lower after the OGTT (281.93 (sd 92.19) v. 267.48 (sd 90.40) micromol/l; P < 0.0001). Subjects with a drop in UA concentrations >40.86 micromol/l (>75th percentile) had higher plasma TAG levels (P = 0.0001), baseline insulin (P = 0.02) and greater insulin resistance (P = 0.034). Women with a difference in plasma concentrations of UA above the 75th percentile had higher baseline insulin levels (P = 0.019), concentration of plasma TAG (P = 0.0001) and a greater insulin resistance index (P = 0.029), whereas the only significant difference in men was the level of TAG. Multiple regression analysis showed that the basal TAG levels, insulin at 120 min, glycaemia at 120 min and waist:hip ratio significantly predicted the variance in the UA difference (r2 0.077). Levels of UA were significantly lower after the OGTT and the individuals with the greatest decrease in UA levels are those who have greater insulin resistance and higher TAG levels.
Resumo:
BACKGROUND Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR). METHODS AND PRINCIPAL FINDINGS VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. CONCLUSIONS Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.
Resumo:
Obesity is associated with a low-grade chronic inflammation state. As a consequence, adipose tissue expresses pro-inflammatory cytokines that propagate inflammatory responses systemically elsewhere, promoting whole-body insulin resistance and consequential islet β-cell exhaustation. Thus, insulin resistance is considered the early stage of type 2 diabetes. However, there is evidence of obese individuals that never develop diabetes indicating that the mechanisms governing the association between the increase of inflammatory factors and type 2 diabetes are much more complex and deserve further investigation. We studied for the first time the differences in insulin signalling and inflammatory pathways in blood and visceral adipose tissue (VAT) of 20 lean healthy donors and 40 equal morbidly obese (MO) patients classified in high insulin resistance (high IR) degree and diabetes state. We studied the changes in proinflammatory markers and lipid content from serum; macrophage infiltration, mRNA expression of inflammatory cytokines and transcription factors, activation of kinases involved in inflammation and expression of insulin signalling molecules in VAT. VAT comparison of these experimental groups revealed that type 2 diabetic-MO subjects exhibit the same pro-inflammatory profile than the high IR-MO patients, characterized by elevated levels of IL-1β, IL-6, TNFα, JNK1/2, ERK1/2, STAT3 and NFκB. Our work rules out the assumption that the inflammation should be increased in obese people with type 2 diabetes compared to high IR obese. These findings indicate that some mechanisms, other than systemic and VAT inflammation must be involved in the development of type 2 diabetes in obesity.
Resumo:
BACKGROUND FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. OBJECTIVE In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. METHODS The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. RESULTS In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. CONCLUSION The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.
Resumo:
BACKGROUND Adipose tissue is a key regulator of energy balance playing an active role in lipid storage and may be a dynamic buffer to control fatty acid flux. Just like PPARgamma, fatty acid synthesis enzymes such as FASN have been implicated in almost all aspects of human metabolic alterations such as obesity, insulin resistance or dyslipemia. The aim of this work is to investigate how FASN and PPARgamma expression in human adipose tissue is related to carbohydrate metabolism dysfunction and obesity. METHODS The study included eighty-seven patients which were classified according to their BMI and to their glycaemia levels in order to study FASN and PPARgamma gene expression levels, anthropometric and biochemical variables. RESULTS The main result of this work is the close relation between FASN expression level and the factors that lead to hyperglycemic state (increased values of glucose levels, HOMA-IR, HbA1c, BMI and triglycerides). The correlation of the enzyme with these parameters is inversely proportional. On the other hand, PPARgamma is not related to carbohydrate metabolism. CONCLUSIONS We can demonstrate that FASN expression is a good candidate to study the pathophysiology of type II diabetes and obesity in humans.
Resumo:
The mechanisms underlying the increased risk of cardiovascular disease associated with diabetes mellitus (DM) are not fully defined. Insulin resistance in human metabolic syndrome patients is associated with decreased expression of the insulin receptor substrate-2- (Irs2-) AKT2 axis in mononuclear leukocytes (MLs). Moreover, acute coronary syndrome (ACS) has been linked through genome-wide association studies to the 2q36-q37.3 locus, which contains the Irs1 gene. Here, we investigated the expression of insulin-signaling pathway genes in MLs from patients with DM, ACS, and ACS plus DM. Quantitative real-time PCR expression studies showed no differences in the mRNA levels of Irs2, Akt2, and Akt1 among all patients. However, Irs1 mRNA expression was significantly increased in patients with ACS-diabetics and nondiabetics-compared with diabetic patients without ACS (P < .02 and P < .005, resp.). The present study reveals for the first time an association between increased Irs1 mRNA levels in MLs of patients with ACS which is not related to DM.
Resumo:
To determine possible mechanisms of action that might explain the nutrient partitioning effect of betaine and conjugated linoleic acid (CLA) in Iberian pigs and to address potential adverse effects, twenty gilts were restrictively fed from 20 to 50 kg BW Control, 0.5% betaine, 1% CLA or 0.5% betaine + 1% CLA diets. Serum hormones and metabolites profile were determined at 30 kg BW and an oral glucose test was performed before slaughter. Pigs were slaughtered at 50 kg BW and livers were obtained for chemical and histological analysis. Decreased serum urea in pigs fed betaine and betaine + CLA diets (11%; P = 0.0001) indicated a more efficient N utilization. The increase in serum triacylglycerol (58% and 28%, respectively; P = 0.0098) indicated that CLA and betaine + CLA could have reduced adipose tissue triacylglycerol synthesis from preformed fatty acids. Serum glucose, low-density lipoprotein (LDL) cholesterol and non-esterified fatty acids were unaffected. CLA and betaine + CLA altered serum lipids profile, although liver of pigs fed CLA diet presented no histopathological changes and triglyceride content was not different from Control pigs. Compared with controls, serum growth hormone decreased (20% to 23%; P = 0.0209) for all treatments. Although serum insulin increased in CLA, and especially in betaine + CLA pigs (28% and 83%; P = 0.0001), indices of insulin resistance were unaffected. In conclusion, CLA, and especially betaine + CLA, induced changes in biochemical parameters and hormones that may partially explain a nutrient partitioning effect in young pigs. Nevertheless, they exhibited weak, although detrimental, effects on blood lipids. Moreover, although livers were chemically and histologically normal, pigs fed CLA diet challenged with a glucose load had higher serum glucose than controls.
Resumo:
BACKGROUND The expansion of adipose tissue is linked to the development of its vasculature, which appears to have the potential to regulate the onset of obesity. However, at present, there are no studies highlighting the relationship between human adipose tissue angiogenesis and obesity-associated insulin resistance (IR). RESULTS Our aim was to analyze and compare angiogenic factor expression levels in both subcutaneous (SC) and omentum (OM) adipose tissues from morbidly obese patients (n = 26) with low (OB/L-IR) (healthy obese) and high (OB/H-IR) degrees of IR, and lean controls (n = 17). Another objective was to examine angiogenic factor correlations with obesity and IR.Here we found that VEGF-A was the isoform with higher expression in both OM and SC adipose tissues, and was up-regulated 3-fold, together with MMP9 in OB/L-IR as compared to leans. This up-regulation decreased by 23% in OB/-H-IR compared to OB/L-IR. On the contrary, VEGF-B, VEGF-C and VEGF-D, together with MMP15 was down-regulated in both OB/H-IR and OB/L-IR compared to lean patients. Moreover, MMP9 correlated positively and VEGF-C, VEGF-D and MMP15 correlated negatively with HOMA-IR, in both SC and OM. CONCLUSION We hereby propose that the alteration in MMP15, VEGF-B, VEGF-C and VEGF-D gene expression may be caused by one of the relevant adipose tissue processes related to the development of IR, and the up-regulation of VEGF-A in adipose tissue could have a relationship with the prevention of this pathology.
Resumo:
SUMMARY The main objective was to evaluate the association between SNPs and haplotypes of the FABP1-4 genes and type 2 diabetes, as well as its interaction with fat intake, in one general Spanish population. The association was replicated in a second population in which HOMA index was also evaluated. METHODS 1217 unrelated individuals were selected from a population-based study [Hortega study: 605 women; mean age 54 y; 7.8% with type 2 diabetes]. The replication population included 805 subjects from Segovia, a neighboring region of Spain (446 females; mean age 52 y; 10.3% with type 2 diabetes). DM2 mellitus was defined in a similar way in both studies. Fifteen SNPs previously associated with metabolic traits or with potential influence in the gene expression within the FABP1-4 genes were genotyped with SNPlex and tested. Age, sex and BMI were used as covariates in the logistic regression model. RESULTS One polymorphism (rs2197076) and two haplotypes of the FABP-1 showed a strong association with the risk of DM2 in the original population. This association was further confirmed in the second population as well as in the pooled sample. None of the other analyzed variants in FABP2, FABP3 and FABP4 genes were associated. There was not a formal interaction between rs2197076 and fat intake. A significant association between the rs2197076 and the haplotypes of the FABP1 and HOMA-IR was also present in the replication population. CONCLUSIONS The study supports the role of common variants of the FABP-1 gene in the development of type 2 diabetes in Caucasians.