Resumo |
In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of beta-cells has been considered to be the first event directly responsible for beta-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, beta-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured beta-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in beta-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable beta-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in beta-cell proliferation and beta-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-gamma antibody, induced a near-total recovery of beta-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on beta-cell regeneration and on beta-cell apoptosis.
Journal Article; Research Support, Non-U.S. Gov't;
This work was supported, in part, Diabetes Group Network of the Spanish Ministry of Health Grants FIS G03/212, FIS PI052164, and FIS PI061707 and by the Andalusia Department of Health Grants CTS-368 and TCMR0031/06.
|
Identificador |
Pérez-Arana G, Blandino-Rosano M, Prada-Oliveira A, Aguilar-Diosdado M, Segundo C. Decrease in {beta}-cell proliferation precedes apoptosis during diabetes development in bio-breeding/worcester rat: beneficial role of Exendin-4. Endocrinology. 2010 Jun; 151(6):2538-46
1945-7170 (Online)
0013-7227 (Print)
http://hdl.handle.net/10668/727
20410202
10.1210/en.2009-1113
|