45 resultados para nonlinear phase matching

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the problem of matching heterogeneous agents in aBayesian learning model. One agent gives a noisy signal to another agent,who is responsible for learning. If production has a strong informationalcomponent, a phase of cross-matching occurs, so that agents of low knowledgecatch up with those of higher one. It is shown that:(i) a greater informational component in production makes cross-matchingmore likely;(ii) as the new technology is mastered, production becomes relatively morephysical and less informational;(iii) a greater dispersion of the ability to learn and transfer informationmakes self-matching more likely; and(iv) self-matching leads to more self-matching, whereas cross-matching canmake less productive agents overtake more productive ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a phase-field model for the dynamics of the interface between two inmiscible fluids with arbitrary viscosity contrast in a rectangular Hele-Shaw cell. With asymptotic matching techniques we check the model to yield the right Hele-Shaw equations in the sharp-interface limit, and compute the corrections to these equations to first order in the interface thickness. We also compute the effect of such corrections on the linear dispersion relation of the planar interface. We discuss in detail the conditions on the interface thickness to control the accuracy and convergence of the phase-field model to the limiting Hele-Shaw dynamics. In particular, the convergence appears to be slower for high viscosity contrasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive nonlinear diffusion equations and equations containing corrections due to fluctuations for a coarse-grained concentration field. To deal with diffusion coefficients with an explicit dependence on the concentration values, we generalize the Van Kampen method of expansion of the master equation to field variables. We apply these results to the derivation of equations of phase-separation dynamics and interfacial growth instabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of different kinds of nonlinear filtering in a joint transform correlator are studied and compared. The study is divided into two parts, one corresponding to object space and the second to the Fourier domain of the joint power spectrum. In the first part, phase and inverse filters are computed; their inverse Fourier transforms are also computed, thereby becoming the reference in the object space. In the Fourier space, the binarization of the power spectrum is realized and compared with a new procedure for removing the spatial envelope. All cases are simulated and experimentally implemented by a compact joint transform correlator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heavy-ion reactions and other collective dynamical processes are frequently described by different theoretical approaches for the different stages of the process, like initial equilibration stage, intermediate locally equilibrated fluid dynamical stage, and final freeze-out stage. For the last stage, the best known is the Cooper-Frye description used to generate the phase space distribution of emitted, noninteracting particles from a fluid dynamical expansion or explosion, assuming a final ideal gas distribution, or (less frequently) an out-of-equilibrium distribution. In this work we do not want to replace the Cooper-Frye description, but rather clarify the ways of using it and how to choose the parameters of the distribution and, eventually, how to choose the form of the phase space distribution used in the Cooper-Frye formula. Moreover, the Cooper-Frye formula is used in connection with the freeze-out problem, while the discussion of transition between different stages of the collision is applicable to other transitions also. More recently, hadronization and molecular dynamics models have been matched to the end of a fluid dynamical stage to describe hadronization and freeze-out. The stages of the model description can be matched to each other on space-time hypersurfaces (just like through the frequently used freeze-out hypersurface). This work presents a generalized description of how to match the stages of the description of a reaction to each other, extending the methodology used at freeze-out, in simple covariant form which is easily applicable in its simplest version for most applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterize the different morphological phases that occur in a simple one-dimensional model of propagation of innovations among economic agents [X. Guardiola et al., Phys. Rev E 66, 026121 (2002)]. We show that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the presence of a continuous roughening transition between a flat (system size independent fluctuations) and a rough phase (system size dependent fluctuations). Finite-size scaling studies at the transition strongly suggest that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is responsible for the novel critical behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of a chaotic system by homogeneous nonlinear driving, when a conditional Lyapunov exponent is zero, may give rise to special and interesting synchronizationlike behaviors in which the response evolves in perfect correlation with the drive. Among them, there are the amplification of the drive attractor and the shift of it to a different region of phase space. In this paper, these synchronizationlike behaviors are discussed, and demonstrated by computer simulation of the Lorentz model [E. N. Lorenz, J. Atmos. Sci. 20 130 (1963)] and the double scroll [T. Matsumoto, L. O. Chua, and M. Komuro, IEEE Trans. CAS CAS-32, 798 (1985)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, edge matching puzzles, an NP-complete problem, have rececived, thanks to money-prized contests, considerable attention from wide audiences. We consider these competitions not only a challenge for SAT/CSP solving techniques but also as an opportunity to showcase the advances in the SAT/CSP community to a general audience. This paper studies the NP-complete problem of edge matching puzzles focusing on providing generation models of problem instances of variable hardness and on its resolution through the application of SAT and CSP techniques. From the generation side, we also identify the phase transition phenomena for each model. As solving methods, we employ both; SAT solvers through the translation to a SAT formula, and two ad-hoc CSP solvers we have developed, with different levels of consistency, employing several generic and specialized heuristics. Finally, we conducted an extensive experimental investigation to identify the hardest generation models and the best performing solving techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron scattering on a thin layer where the potential depends self-consistently on the wave function has been studied. When the amplitude of the incident wave exceeds a certain threshold, a soliton-shaped brightening (darkening) appears on the layer causing diffraction of the wave. Thus the spontaneously formed transverse pattern can be viewed as a self-induced nonlinear quantum screen. Attractive or repulsive nonlinearities result in different phase shifts of the wave function on the screen, which give rise to quite different diffraction patterns. Among others, the nonlinearity can cause self-focusing of the incident wave into a beam, splitting in two "beams," single or double traces with suppressed reflection or transmission, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review several results concerning the long time asymptotics of nonlinear diffusion models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffusion models are proposed and their numerical properties analysed. We demonstrate the long time asymptotic results by numerical simulation and we discuss several open problems based on these numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics can be characterized in terms of fixed points of certain maps which are contractions for the euclidean Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities for values close to zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a dynamic model where traders in each period are matched randomly into pairs who then bargain about the division of a fixed surplus. When agreement is reached the traders leave the market. Traders who do not come to an agreement return next period in which they will be matched again, as long as their deadline has not expired yet. New traders enter exogenously in each period. We assume that traders within a pair know each other's deadline. We define and characterize the stationary equilibrium configurations. Traders with longer deadlines fare better than traders with short deadlines. It is shown that the heterogeneity of deadlines may cause delay. It is then shown that a centralized mechanism that controls the matching protocol, but does not interfere with the bargaining, eliminates all delay. Even though this efficient centralized mechanism is not as good for traders with long deadlines, it is shown that in a model where all traders can choose which mechanism to

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a simple and concise proof that so-called generalized median stable matchings are well-defined stable matchings for college admissions problems. Furthermore, we discuss the fairness properties of median stable matchings and conclude with two illustrative examples of college admissions markets, the lattices of stable matchings, and the corresponding generalized median stable matchings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ma (1996) studied the random order mechanism, a matching mechanism suggested by Roth and Vande Vate (1990) for marriage markets. By means of an example he showed that the random order mechanism does not always reach all stable matchings. Although Ma's (1996) result is true, we show that the probability distribution he presented - and therefore the proof of his Claim 2 - is not correct. The mistake in the calculations by Ma (1996) is due to the fact that even though the example looks very symmetric, some of the calculations are not as ''symmetric.''