Semidiscretization and long-time asymptotics of nonlinear diffusion equations


Autoria(s): Carrillo, José A.; Di Francesco, Marco; Gualdani, Maria P.
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/03/2005

Resumo

We review several results concerning the long time asymptotics of nonlinear diffusion models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffusion models are proposed and their numerical properties analysed. We demonstrate the long time asymptotic results by numerical simulation and we discuss several open problems based on these numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics can be characterized in terms of fixed points of certain maps which are contractions for the euclidean Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities for values close to zero.

Formato

1108774 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/1740

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;625

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Burger, Equacions de #Desenvolupaments asimptòtics
Tipo

info:eu-repo/semantics/preprint