Chaotic systems with a null conditional Lyapunov exponent under nonlinear driving.


Autoria(s): González-Miranda, J. M. (Jesús Manuel)
Contribuinte(s)

Universitat de Barcelona

Data(s)

26/07/2011

Resumo

Control of a chaotic system by homogeneous nonlinear driving, when a conditional Lyapunov exponent is zero, may give rise to special and interesting synchronizationlike behaviors in which the response evolves in perfect correlation with the drive. Among them, there are the amplification of the drive attractor and the shift of it to a different region of phase space. In this paper, these synchronizationlike behaviors are discussed, and demonstrated by computer simulation of the Lorentz model [E. N. Lorenz, J. Atmos. Sci. 20 130 (1963)] and the double scroll [T. Matsumoto, L. O. Chua, and M. Komuro, IEEE Trans. CAS CAS-32, 798 (1985)].

Identificador

http://hdl.handle.net/2445/18847

Idioma(s)

eng

Publicador

The American Physical Society

Direitos

(c) American Physical Society, 1996

Palavras-Chave #Física estadística #Termodinàmica #Sistemes no lineals #Caos (Teoria de sistemes) #Dinàmica de fluids #Electrònica #Microones #Statistical physics #Thermodynamics #Nonlinear systems #Chaotic behavior in systems #Fluid dynamics #Electronics #Microwaves
Tipo

info:eu-repo/semantics/article