Chaotic systems with a null conditional Lyapunov exponent under nonlinear driving.
Contribuinte(s) |
Universitat de Barcelona |
---|---|
Data(s) |
26/07/2011
|
Resumo |
Control of a chaotic system by homogeneous nonlinear driving, when a conditional Lyapunov exponent is zero, may give rise to special and interesting synchronizationlike behaviors in which the response evolves in perfect correlation with the drive. Among them, there are the amplification of the drive attractor and the shift of it to a different region of phase space. In this paper, these synchronizationlike behaviors are discussed, and demonstrated by computer simulation of the Lorentz model [E. N. Lorenz, J. Atmos. Sci. 20 130 (1963)] and the double scroll [T. Matsumoto, L. O. Chua, and M. Komuro, IEEE Trans. CAS CAS-32, 798 (1985)]. |
Identificador | |
Idioma(s) |
eng |
Publicador |
The American Physical Society |
Direitos |
(c) American Physical Society, 1996 |
Palavras-Chave | #Física estadística #Termodinàmica #Sistemes no lineals #Caos (Teoria de sistemes) #Dinàmica de fluids #Electrònica #Microones #Statistical physics #Thermodynamics #Nonlinear systems #Chaotic behavior in systems #Fluid dynamics #Electronics #Microwaves |
Tipo |
info:eu-repo/semantics/article |