Continuous phase transition in a spin-glass model without time-reversal symmetry


Autoria(s): Parisi, G.; Picco, M.; Ritort Farran, Fèlix
Contribuinte(s)

Universitat de Barcelona

Data(s)

26/07/2011

Resumo

We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.

Identificador

http://hdl.handle.net/2445/18821

Idioma(s)

eng

Publicador

The American Physical Society

Direitos

(c) American Physical Society, 1999

Palavras-Chave #Física estadística #Termodinàmica #Sistemes no lineals #Propietats magnètiques #Equacions d'estat #Regla de les fases i equilibri #Transformacions de fase (Física estadística) #Statistical physics #Thermodynamics #Nonlinear systems #Magnetic properties #Equations of state #Phase rule and equilibrium #Phase transformations (Statistical physics)
Tipo

info:eu-repo/semantics/article