139 resultados para stochastic methods
Resumo:
We consider linear stochastic differential-algebraic equations with constant coefficients and additive white noise. Due to the nature of this class of equations, the solution must be defined as a generalised process (in the sense of Dawson and Fernique). We provide sufficient conditions for the law of the variables of the solution process to be absolutely continuous with respect to Lebesgue measure.
Resumo:
This paper aims at assessing the optimal behavior of a firm facing stochastic costs of production. In an imperfectly competitive setting, we evaluate to what extent a firm may decide to locate part of its production in other markets different from which it is actually settled. This decision is taken in a stochastic environment. Portfolio theory is used to derive the optimal solution for the intertemporal profit maximization problem. In such a framework, splitting production between different locations may be optimal when a firm is able to charge different prices in the different local markets.
Resumo:
In this paper we propose the infimum of the Arrow-Pratt index of absolute risk aversion as a measure of global risk aversion of a utility function. We then show that, for any given arbitrary pair of distributions, there exists a threshold level of global risk aversion such that all increasing concave utility functions with at least as much global risk aversion would rank the two distributions in the same way. Furthermore, this threshold level is sharp in the sense that, for any lower level of global risk aversion, we can find two utility functions in this class yielding opposite preference relations for the two distributions.
Resumo:
In this paper, a new class of generalized backward doubly stochastic differential equations is investigated. This class involves an integral with respect to an adapted continuous increasing process. A probabilistic representation for viscosity solutions of semi-linear stochastic partial differential equations with a Neumann boundary condition is given.
Resumo:
In this paper we study one-dimensional reflected backward stochastic differential equation when the noise is driven by a Brownian motion and an independent Poisson point process when the solution is forced to stay above a right continuous left-hand limited obstacle. We prove existence and uniqueness of the solution by using a penalization method combined with a monotonic limit theorem.
Resumo:
Recently there has been a great deal of work on noncommutative algebraic cryptography. This involves the use of noncommutative algebraic objects as the platforms for encryption systems. Most of this work, such as the Anshel-Anshel-Goldfeld scheme, the Ko-Lee scheme and the Baumslag-Fine-Xu Modular group scheme use nonabelian groups as the basic algebraic object. Some of these encryption methods have been successful and some have been broken. It has been suggested that at this point further pure group theoretic research, with an eye towards cryptographic applications, is necessary.In the present study we attempt to extend the class of noncommutative algebraic objects to be used in cryptography. In particular we explore several different methods to use a formal power series ring R && x1; :::; xn && in noncommuting variables x1; :::; xn as a base to develop cryptosystems. Although R can be any ring we have in mind formal power series rings over the rationals Q. We use in particular a result of Magnus that a finitely generated free group F has a faithful representation in a quotient of the formal power series ring in noncommuting variables.
Resumo:
In the literature on risk, one generally assume that uncertainty is uniformly distributed over the entire working horizon, when the absolute risk-aversion index is negative and constant. From this perspective, the risk is totally exogenous, and thus independent of endogenous risks. The classic procedure is "myopic" with regard to potential changes in the future behavior of the agent due to inherent random fluctuations of the system. The agent's attitude to risk is rigid. Although often criticized, the most widely used hypothesis for the analysis of economic behavior is risk-neutrality. This borderline case must be envisaged with prudence in a dynamic stochastic context. The traditional measures of risk-aversion are generally too weak for making comparisons between risky situations, given the dynamic �complexity of the environment. This can be highlighted in concrete problems in finance and insurance, context for which the Arrow-Pratt measures (in the small) give ambiguous.
Resumo:
The objective of this paper is to re-evaluate the attitude to effort of a risk-averse decision-maker in an evolving environment. In the classic analysis, the space of efforts is generally discretized. More realistic, this new approach emploies a continuum of effort levels. The presence of multiple possible efforts and performance levels provides a better basis for explaining real economic phenomena. The traditional approach (see, Laffont, J. J. & Tirole, J., 1993, Salanie, B., 1997, Laffont, J.J. and Martimort, D, 2002, among others) does not take into account the potential effect of the system dynamics on the agent's behavior to effort over time. In the context of a Principal-agent relationship, not only the incentives of the Principal can determine the private agent to allocate a good effort, but also the evolution of the dynamic system. The incentives can be ineffective when the environment does not incite the agent to invest a good effort. This explains why, some effici
Resumo:
Informe de investigación elaborado a partir de una estancia en el Laboratorio de Diseño Computacional en Aeroespacial en el Massachusetts Institute of Technology (MIT), Estados Unidos, entre noviembre de 2006 y agosto de 2007. La aerodinámica es una rama de la dinámica de fluidos referida al estudio de los movimientos de los líquidos o gases, cuya meta principal es predecir las fuerzas aerodinámicas en un avión o cualquier tipo de vehículo, incluyendo los automóviles. Las ecuaciones de Navier-Stokes representan un estado dinámico del equilibrio de las fuerzas que actúan en cualquier región dada del fluido. Son uno de los sistemas de ecuaciones más útiles porque describen la física de una gran cantidad de fenómenos como corrientes del océano, flujos alrededor de una superficie de sustentación, etc. En el contexto de una tesis doctoral, se está estudiando un flujo viscoso e incompresible, solucionando las ecuaciones de Navier- Stokes incompresibles de una manera eficiente. Durante la estancia en el MIT, se ha utilizado un método de Galerkin discontinuo para solucionar las ecuaciones de Navier-Stokes incompresibles usando, o bien un parámetro de penalti para asegurar la continuidad de los flujos entre elementos, o bien un método de Galerkin discontinuo compacto. Ambos métodos han dado buenos resultados y varios ejemplos numéricos se han simulado para validar el buen comportamiento de los métodos desarrollados. También se han estudiado elementos particulares, los elementos de Raviart y Thomas, que se podrían utilizar en una formulación mixta para obtener un algoritmo eficiente para solucionar problemas numéricos complejos.
Resumo:
We introduce and study a class of infinite-horizon nonzero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zerotemperature Glauber dynamics on random graphs of possibly infinite volume.
Resumo:
This paper surveys recent evidence on the determinants of (national and/or foreign) industrial location. We find that the basic analytical framework has remained essentially unaltered since the early contributions of the early 1980's while, in contrast, there have been significant advances in the quality of the data and, to a lesser extent, the econometric modelling. We also identify certain determinants (neoclassical and institutional factors) that tend to provide largely consistent results across the reviewed studies. In light of this evidence, we finally suggest future lines of research.
Resumo:
We prove global well-posedness in the strong sense for stochastic generalized porous media equations driven by locally square integrable martingales with stationary independent increments.
Resumo:
This paper uses sequential stochastic dominance procedures to compare the joint distribution of health and income across space and time. It is the First application of which we are aware of methods to compare multidimensional distributions of income and health using procedures that are robust to aggregation techniques. The paper's approach is more general than comparisons of health gradients and does not require the estimation of health equivalent incomes. We illustrate the approach by contrasting Canada and the US using comparable data. Canada dominates the US over the lower bidimensional welfare distribution of health and income, though not generally in terms of the uni-dimensional distribution of health or income. The paper also finds that welfare for both Canadians and Americans has not unambiguously improved during the last decade over the joint distribution of income and health, in spite of the fact that the uni-dimensional distributions of income have clearly improved during that period.
Resumo:
We construct a new family of semi-discrete numerical schemes for the approximation of the one-dimensional periodic Vlasov-Poisson system. The methods are based on the coupling of discontinuous Galerkin approximation to the Vlasov equation and several finite element (conforming, non-conforming and mixed) approximations for the Poisson problem. We show optimal error estimates for the all proposed methods in the case of smooth compactly supported initial data. The issue of energy conservation is also analyzed for some of the methods.