A class of stochastic games with infinitely many interacting agents related to Glauber dynamics on random graphs


Autoria(s): Marinelli, Carlo; De Santis, Emilio
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/09/2007

Resumo

We introduce and study a class of infinite-horizon nonzero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zerotemperature Glauber dynamics on random graphs of possibly infinite volume.

Formato

18

224635 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/9072

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;763

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Jocs, Teoria de #Grafs, Teoria de #51 - Matemàtiques
Tipo

info:eu-repo/semantics/preprint