31 resultados para Nonlinear constrained optimization problems
Resumo:
In a distribution problem, and specfii cally in bankruptcy issues, the Proportional (P) and the Egalitarian (EA) divisions are two of the most popular ways to resolve the conflict. The Constrained Equal Awards rule (CEA) is introduced in bankruptcy literature to ensure that no agent receives more than her claim, a problem that can arise when using the egalitarian division. We propose an alternative modi cation, by using a convex combination of P and EA. The recursive application of this new rule finishes at the CEA rule. Our solution concept ensures a minimum amount to each agent, and distributes the remaining estate in a proportional way. Keywords: Bankruptcy problems, Proportional rule, Equal Awards, Convex combination of rules, Lorenz dominance. JEL classi fication: C71, D63, D71.
Resumo:
The idea of ensuring a guarantee (a minimum amount of the resources) to each agent has recently acquired great relevance, in both social and politi- cal terms. Furthermore, the notion of Solidarity has been treated frequently in redistribution problems to establish that any increment of the resources should be equally distributed taking into account some relevant characteris- tics. In this paper, we combine these two general concepts, guarantee and solidarity, to characterize the uniform rules in bankruptcy problems (Con- strained Equal Awards and Constrained Equal Losses rules). Keywords: Constrained Equal Awards, Constrained Equal Losses, Lower bounds, Bankruptcy problems, Solidarity. JEL classification: C71, D63, D71.
Resumo:
This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker–Planck effects, and how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more achievable analysis regarding the local wellposedness of the initial–boundary value problem. This simplification requires the performance of the polar (modulus–argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.
Resumo:
In this note, we consider claims problems with indivisible goods. Specifically, by applying recursively the P-rights lower bound (Jiménez-Gómez and Marco-Gil (2008)), we ensure the fulfillment of Weak Order Preservation, considered by many authors as a minimal requirement of fairness. Moreover, we retrieve the Discrete Constrained Equal Losses and the Discrete Constrained Equal Awards rules (Herrero and Martíınez (2008)). Finally, by the recursive double imposition of a lower and an upper bound, we obtain the average between them. Keywords: Claims problems, Indivisibilities, Order Preservation, Constrained Egalitarian rules, Midpoint. JEL classification: C71, D63, D71.
Resumo:
Globalization involves several facility location problems that need to be handled at large scale. Location Allocation (LA) is a combinatorial problem in which the distance among points in the data space matter. Precisely, taking advantage of the distance property of the domain we exploit the capability of clustering techniques to partition the data space in order to convert an initial large LA problem into several simpler LA problems. Particularly, our motivation problem involves a huge geographical area that can be partitioned under overall conditions. We present different types of clustering techniques and then we perform a cluster analysis over our dataset in order to partition it. After that, we solve the LA problem applying simulated annealing algorithm to the clustered and non-clustered data in order to work out how profitable is the clustering and which of the presented methods is the most suitable
Resumo:
This paper deals with fault detection and isolation problems for nonlinear dynamic systems. Both problems are stated as constraint satisfaction problems (CSP) and solved using consistency techniques. The main contribution is the isolation method based on consistency techniques and uncertainty space refining of interval parameters. The major advantage of this method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements, and model errors. Interval calculations bring independence from the assumption of monotony considered by several approaches for fault isolation which are based on observers. An application to a well known alcoholic fermentation process model is presented
Resumo:
We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid (whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then the problem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.
Resumo:
Canonical correspondence analysis and redundancy analysis are two methods of constrained ordination regularly used in the analysis of ecological data when several response variables (for example, species abundances) are related linearly to several explanatory variables (for example, environmental variables, spatial positions of samples). In this report I demonstrate the advantages of the fuzzy coding of explanatory variables: first, nonlinear relationships can be diagnosed; second, more variance in the responses can be explained; and third, in the presence of categorical explanatory variables (for example, years, regions) the interpretation of the resulting triplot ordination is unified because all explanatory variables are measured at a categorical level.
Resumo:
We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid(whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then theproblem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.
Resumo:
We address the problem of scheduling a multi-station multiclassqueueing network (MQNET) with server changeover times to minimizesteady-state mean job holding costs. We present new lower boundson the best achievable cost that emerge as the values ofmathematical programming problems (linear, semidefinite, andconvex) over relaxed formulations of the system's achievableperformance region. The constraints on achievable performancedefining these formulations are obtained by formulatingsystem's equilibrium relations. Our contributions include: (1) aflow conservation interpretation and closed formulae for theconstraints previously derived by the potential function method;(2) new work decomposition laws for MQNETs; (3) new constraints(linear, convex, and semidefinite) on the performance region offirst and second moments of queue lengths for MQNETs; (4) a fastbound for a MQNET with N customer classes computed in N steps; (5)two heuristic scheduling policies: a priority-index policy, anda policy extracted from the solution of a linear programmingrelaxation.
Resumo:
The set covering problem is an NP-hard combinatorial optimization problemthat arises in applications ranging from crew scheduling in airlines todriver scheduling in public mass transport. In this paper we analyze searchspace characteristics of a widely used set of benchmark instances throughan analysis of the fitness-distance correlation. This analysis shows thatthere exist several classes of set covering instances that have a largelydifferent behavior. For instances with high fitness distance correlation,we propose new ways of generating core problems and analyze the performanceof algorithms exploiting these core problems.
Resumo:
Gas sensing systems based on low-cost chemical sensor arrays are gaining interest for the analysis of multicomponent gas mixtures. These sensors show different problems, e.g., nonlinearities and slow time-response, which can be partially solved by digital signal processing. Our approach is based on building a nonlinear inverse dynamic system. Results for different identification techniques, including artificial neural networks and Wiener series, are compared in terms of measurement accuracy.
Resumo:
[cat] En aquest treball s'analitza un model estocàstic en temps continu en el que l'agent decisor descompta les utilitats instantànies i la funció final amb taxes de preferència temporal constants però diferents. En aquest context es poden modelitzar problemes en els quals, quan el temps s'acosta al moment final, la valoració de la funció final incrementa en comparació amb les utilitats instantànies. Aquest tipus d'asimetria no es pot descriure ni amb un descompte estàndard ni amb un variable. Per tal d'obtenir solucions consistents temporalment es deriva l'equació de programació dinàmica estocàstica, les solucions de la qual són equilibris Markovians. Per a aquest tipus de preferències temporals, s'estudia el model clàssic de consum i inversió (Merton, 1971) per a les funcions d'utilitat del tipus CRRA i CARA, comparant els equilibris Markovians amb les solucions inconsistents temporalment. Finalment es discuteix la introducció del temps final aleatori.
Resumo:
[cat] En aquest treball s'analitza un model estocàstic en temps continu en el que l'agent decisor descompta les utilitats instantànies i la funció final amb taxes de preferència temporal constants però diferents. En aquest context es poden modelitzar problemes en els quals, quan el temps s'acosta al moment final, la valoració de la funció final incrementa en comparació amb les utilitats instantànies. Aquest tipus d'asimetria no es pot descriure ni amb un descompte estàndard ni amb un variable. Per tal d'obtenir solucions consistents temporalment es deriva l'equació de programació dinàmica estocàstica, les solucions de la qual són equilibris Markovians. Per a aquest tipus de preferències temporals, s'estudia el model clàssic de consum i inversió (Merton, 1971) per a les funcions d'utilitat del tipus CRRA i CARA, comparant els equilibris Markovians amb les solucions inconsistents temporalment. Finalment es discuteix la introducció del temps final aleatori.
Resumo:
Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.