Solving Large Location-Allocation problems by Clustering and Simulated Annealing


Autoria(s): Torrent-Fontbona, Ferran; Muñoz Solà, Víctor; López Ibáñez, Beatriz
Data(s)

29/01/2013

Resumo

Globalization involves several facility location problems that need to be handled at large scale. Location Allocation (LA) is a combinatorial problem in which the distance among points in the data space matter. Precisely, taking advantage of the distance property of the domain we exploit the capability of clustering techniques to partition the data space in order to convert an initial large LA problem into several simpler LA problems. Particularly, our motivation problem involves a huge geographical area that can be partitioned under overall conditions. We present different types of clustering techniques and then we perform a cluster analysis over our dataset in order to partition it. After that, we solve the LA problem applying simulated annealing algorithm to the clustered and non-clustered data in order to work out how profitable is the clustering and which of the presented methods is the most suitable

Comunicació presentada a la 'Second International Conference on Applied and Theoretical Information Systems Research (2nd-ATISR2012)' celebrada a Taipei (Taiwan), els dies 27, 28 i 29 de desembre de 2012

Identificador

http://hdl.handle.net/10256/7381

Idioma(s)

eng

Direitos

Attribution-NonCommercial-NoDerivs 3.0 Spain

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Algorismes -- Congressos #Algorithms -- Congresses #Optimització matemàtica -- Congressos #Mathematical optimization -- Congresses #Solució de problemes -- Congressos #Problem solving -- Congresses #Simulació, Mètodes de -- Congressos #Simulation methods -- Congresses
Tipo

info:eu-repo/semantics/conferenceObject