Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner-Goldin type modeling quantum dissipation


Autoria(s): Guerrero, Pilar; López, J. L.; Montejo-Gámez, J.; Nieto, J.
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

2011

Resumo

This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker–Planck effects, and how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more achievable analysis regarding the local wellposedness of the initial–boundary value problem. This simplification requires the performance of the polar (modulus–argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.

Formato

35 p.

Identificador

http://hdl.handle.net/2072/196883

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;1098

Direitos

info:eu-repo/semantics/openAccess

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Fonte

RECERCAT (Dipòsit de la Recerca de Catalunya)

Palavras-Chave #Equacions no lineals #Quàntums, Teoria dels #Logaritmes #517 - Anàlisi
Tipo

info:eu-repo/semantics/preprint