34 resultados para Zero-Divisor Graphs
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We observe zero-differential resistance states at low temperatures and moderate direct currents in a bilayer electron system formed by a wide quantum well. Several regions of vanishing resistance evolve from the inverted peaks of magneto-intersubband oscillations as the current increases. The experiment, supported by a theoretical analysis, suggests that the origin of this phenomenon is based on instability of homogeneous current flow under conditions of negative differential resistivity, which leads to formation of current domains in our sample, similar to the case of single-layer systems.
Resumo:
Magnetotransport measurements on a high-mobility electron bilayer system formed in a wide GaAs quantum well reveal vanishing dissipative resistance under continuous microwave irradiation. Profound zero-resistance states (ZRS) appear even in the presence of additional intersubband scattering of electrons. We study the dependence of photoresistance on frequency, microwave power, and temperature. Experimental results are compared with a theory demonstrating that the conditions for absolute negative resistivity correlate with the appearance of ZRS.
Resumo:
Bilayer graphene nanoribbons with zigzag termination are studied within the tight-binding model. We also include single-site electron-electron interactions via the Hubbard model within the unrestricted Hartree-Fock approach. We show that either the interactions between the outermost edge atoms or the presence of a magnetic order can cause a splitting of the zero-energy edge states. Two kinds of edge alignments are considered. For one kind of edge alignment (?) the system is nonmagnetic unless the Hubbard parameter U becomes greater than a critical value Uc. For the other kind of edge alignment (?) the system is magnetic for any U>0. Our results agree very well with ab initio density functional theory calculations.
Resumo:
A phonon structure in the photoluminescence of EuTe was discovered, with a well-defined zero-phonon emission line (ZPL). The ZPL redshifts linearly with the intensity of applied magnetic field, indicating spin relaxation of the photoexcited electron, and saturates at a lower magnetic field than the optical absorption bandgap, which is attributed to formation of magnetic polarons. From the difference in these saturation fields, the zero-field polaron binding energy and radius are estimated to be 43 meV and 3.2 (in units of the EuTe lattice parameter), respectively. (C) 2011 American Institute of Physics. [doi:10.1063/1.3634030]
Resumo:
We investigate a conjecture on the cover times of planar graphs by means of large Monte Carlo simulations. The conjecture states that the cover time tau (G(N)) of a planar graph G(N) of N vertices and maximal degree d is lower bounded by tau (G(N)) >= C(d)N(lnN)(2) with C(d) = (d/4 pi) tan(pi/d), with equality holding for some geometries. We tested this conjecture on the regular honeycomb (d = 3), regular square (d = 4), regular elongated triangular (d = 5), and regular triangular (d = 6) lattices, as well as on the nonregular Union Jack lattice (d(min) = 4, d(max) = 8). Indeed, the Monte Carlo data suggest that the rigorous lower bound may hold as an equality for most of these lattices, with an interesting issue in the case of the Union Jack lattice. The data for the honeycomb lattice, however, violate the bound with the conjectured constant. The empirical probability distribution function of the cover time for the square lattice is also briefly presented, since very little is known about cover time probability distribution functions in general.
Resumo:
We discuss an approximation for the dynamic charge response of nonlinear spin-1/2 Luttinger liquids in the limit of small momentum. Besides accounting for the broadening of the charge peak due to two-holon excitations, the nonlinearity of the dispersion gives rise to a two-spinon peak, which at zero temperature has an asymmetric line shape. At finite temperature the spin peak is broadened by diffusion. As an application, we discuss the density and temperature dependence of the Coulomb drag resistivity due to long-wavelength scattering between quantum wires.
Resumo:
The successful measurements of a sublattice magnetism with (51)V NMR techniques in the sigma-phase Fe(100-x)V(x) alloys with x=34.4, 39.9, and 47.9 are reported. Vanadium atoms, which were revealed to be present on all five crystallographic sites, are found to be under the action of the hyperfine magnetic fields produced by the neighboring Fe atoms, which allow the observation of (51)V NMR signals. Their nuclear magnetic properties are characteristic of a given site, which strongly depend on the composition. Site A exhibits the strongest magnetism while site D is the weakest. The estimated average magnetic moment per V atom decreases from 0.36 mu(B) for x=34.4 to 0.20 mu(B) for x=47.9. The magnetism revealed at V atoms is linearly correlated with the magnetic moment of Fe atoms, which implies that the former is induced by the latter.
Resumo:
A numerical renormalization-group study of the conductance through a quantum wire containing noninteracting electrons side-coupled to a quantum dot is reported. The temperature and the dot-energy dependence of the conductance are examined in the light of a recently derived linear mapping between the temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model of a quantum wire with an embedded quantum dot. Two conduction paths, one traversing the wire, the other a bypass through the quantum dot, are identified. A gate potential applied to the quantum wire is shown to control the current through the bypass. When the potential favors transport through the wire, the conductance in the Kondo regime rises from nearly zero at low temperatures to nearly ballistic at high temperatures. When it favors the dot, the pattern is reversed: the conductance decays from nearly ballistic to nearly zero. When comparable currents flow through the two channels, the conductance is nearly temperature independent in the Kondo regime, and Fano antiresonances in the fixed-temperature plots of the conductance as a function of the dot-energy signal interference between them. Throughout the Kondo regime and, at low temperatures, even in the mixed-valence regime, the numerical data are in excellent agreement with the universal mapping.
Resumo:
The thermal dependence of the zero-bias conductance for the single electron transistor is the target of two independent renormalization-group approaches, both based on the spin-degenerate Anderson impurity model. The first approach, an analytical derivation, maps the Kondo-regime conductance onto the universal conductance function for the particle-hole symmetric model. Linear, the mapping is parametrized by the Kondo temperature and the charge in the Kondo cloud. The second approach, a numerical renormalization-group computation of the conductance as a function the temperature and applied gate voltages offers a comprehensive view of zero-bias charge transport through the device. The first approach is exact in the Kondo regime; the second, essentially exact throughout the parametric space of the model. For illustrative purposes, conductance curves resulting from the two approaches are compared.
Resumo:
A planar k-restricted structure is a simple graph whose blocks are planar and each has at most k vertices. Planar k-restricted structures are used by approximation algorithms for Maximum Weight Planar Subgraph, which motivates this work. The planar k-restricted ratio is the infimum, over simple planar graphs H, of the ratio of the number of edges in a maximum k-restricted structure subgraph of H to the number edges of H. We prove that, as k tends to infinity, the planar k-restricted ratio tends to 1/2. The same result holds for the weighted version. Our results are based on analyzing the analogous ratios for outerplanar and weighted outerplanar graphs. Here both ratios tend to 1 as k goes to infinity, and we provide good estimates of the rates of convergence, showing that they differ in the weighted from the unweighted case.
Resumo:
In this paper we determine the local and global resilience of random graphs G(n,p) (p >> n(-1)) with respect to the property of containing a cycle of length at least (1 - alpha)n. Roughly speaking, given alpha > 0, we determine the smallest r(g) (G, alpha) with the property that almost surely every subgraph of G = G(n,p) having more than r(g) (G, alpha)vertical bar E(G)vertical bar edges contains a cycle of length at least (1 - alpha)n (global resilience). We also obtain, for alpha < 1/2, the smallest r(l) (G, alpha) such that any H subset of G having deg(H) (v) larger than r(l) (G, alpha) deg(G) (v) for all v is an element of V(G) contains a cycle of length at least (1 - alpha)n (local resilience). The results above are in fact proved in the more general setting of pseudorandom graphs.
Resumo:
Consider a discrete locally finite subset Gamma of R(d) and the cornplete graph (Gamma, E), with vertices Gamma and edges E. We consider Gibbs measures on the set of sub-graphs with vertices Gamma and edges E` subset of E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when Gamma is sampled from a homogeneous Poisson process; and (b) for a fixed Gamma with sufficiently sparse points. (c) 2010 American Institute of Physics. [doi:10.1063/1.3514605]
Resumo:
Fe(100-x)Ti(x) alloys (x = 10, 15, 20) were studied with respect to their microstructure and magnetostriction. Depending on heat treatment temperature and composition, the sample retained either the alpha-phase (A2 structure) or the alpha-phase plus the TiFe(2) Laves phase (C14 structure). The saturation magnetostriction measured at 238K is negative, about -11 ppm. However, for fields up to 0.4 T the magnetostriction is barely zero, a very interesting result. High values of magnetostriction are of interest for applications mainly in sensors and actuators, but zero magnetostriction is also a remarkable property, desirable for many applications such as electric transformers and fluxgate sensor cores. Therefore, the Fe(100-x)Ti(x) (x < 20 at%) are an attractive option to be considered for these applications.
Resumo:
The behavior of stability regions of nonlinear autonomous dynamical systems subjected to parameter variation is studied in this paper. In particular, the behavior of stability regions and stability boundaries when the system undergoes a type-zero sadle-node bifurcation on the stability boundary is investigated in this paper. It is shown that the stability regions suffer drastic changes with parameter variation if type-zero saddle-node bifurcations occur on the stability boundary. A complete characterization of these changes in the neighborhood of a type-zero saddle-node bifurcation value is presented in this paper. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.