Sparse partition universal graphs for graphs of bounded degree


Autoria(s): KOHAYAKAWA, Yoshiharu; ROEDL, Vojtech; SCHACHT, Mathias; SZEMEREDI, Endre
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

In 1983, Chvatal, Trotter and the two senior authors proved that for any Delta there exists a constant B such that, for any n, any 2-colouring of the edges of the complete graph K(N) with N >= Bn vertices yields a monochromatic copy of any graph H that has n vertices and maximum degree Delta. We prove that the complete graph may be replaced by a sparser graph G that has N vertices and O(N(2-1/Delta)log(1/Delta)N) edges, with N = [B`n] for some constant B` that depends only on Delta. Consequently, the so-called size-Ramsey number of any H with n vertices and maximum degree Delta is O(n(2-1/Delta)log(1/Delta)n) Our approach is based on random graphs; in fact, we show that the classical Erdos-Renyi random graph with the numerical parameters above satisfies a stronger partition property with high probability, namely, that any 2-colouring of its edges contains a monochromatic universal graph for the class of graphs on n vertices and maximum degree Delta. The main tool in our proof is the regularity method, adapted to a suitable sparse setting. The novel ingredient developed here is an embedding strategy that allows one to embed bounded degree graphs of linear order in certain pseudorandom graphs. Crucial to our proof is the fact that regularity is typically inherited at a scale that is much finer than the scale at which it is assumed. (C) 2011 Elsevier Inc. All rights reserved.

CAPES-DAAD

DAAD

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

FAPESP

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

CNPq[FAPESP 2003/09925-5]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq[308509/2007-2]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq[485671/2007-7]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq[486124/2007-0]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq[484154/2010-9]

NSF

NSF[DMS 0300529]

NSF[DMS 0800070]

NSF

NSF[DMS 0100784]

NSF

NSF

NSF[DMS 0603745]

Identificador

ADVANCES IN MATHEMATICS, v.226, n.6, p.5041-5065, 2011

0001-8708

http://producao.usp.br/handle/BDPI/30421

10.1016/j.aim.2011.01.004

http://dx.doi.org/10.1016/j.aim.2011.01.004

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Advances in Mathematics

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Size-Ramsey numbers #Universal graphs #Regularity lemma #Random graphs #Inheritance of regularity #BLOW-UP LEMMA #K-UNIFORM HYPERGRAPHS #SIZE-RAMSEY NUMBER #REGULARITY LEMMA #SZEMEREDI THEOREM #TREES #Mathematics
Tipo

article

original article

publishedVersion