Sparse partition universal graphs for graphs of bounded degree
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
In 1983, Chvatal, Trotter and the two senior authors proved that for any Delta there exists a constant B such that, for any n, any 2-colouring of the edges of the complete graph K(N) with N >= Bn vertices yields a monochromatic copy of any graph H that has n vertices and maximum degree Delta. We prove that the complete graph may be replaced by a sparser graph G that has N vertices and O(N(2-1/Delta)log(1/Delta)N) edges, with N = [B`n] for some constant B` that depends only on Delta. Consequently, the so-called size-Ramsey number of any H with n vertices and maximum degree Delta is O(n(2-1/Delta)log(1/Delta)n) Our approach is based on random graphs; in fact, we show that the classical Erdos-Renyi random graph with the numerical parameters above satisfies a stronger partition property with high probability, namely, that any 2-colouring of its edges contains a monochromatic universal graph for the class of graphs on n vertices and maximum degree Delta. The main tool in our proof is the regularity method, adapted to a suitable sparse setting. The novel ingredient developed here is an embedding strategy that allows one to embed bounded degree graphs of linear order in certain pseudorandom graphs. Crucial to our proof is the fact that regularity is typically inherited at a scale that is much finer than the scale at which it is assumed. (C) 2011 Elsevier Inc. All rights reserved. CAPES-DAAD DAAD Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq[FAPESP 2003/09925-5] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[308509/2007-2] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[485671/2007-7] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[486124/2007-0] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[484154/2010-9] NSF NSF[DMS 0300529] NSF[DMS 0800070] NSF NSF[DMS 0100784] NSF NSF NSF[DMS 0603745] |
Identificador |
ADVANCES IN MATHEMATICS, v.226, n.6, p.5041-5065, 2011 0001-8708 http://producao.usp.br/handle/BDPI/30421 10.1016/j.aim.2011.01.004 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Advances in Mathematics |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Size-Ramsey numbers #Universal graphs #Regularity lemma #Random graphs #Inheritance of regularity #BLOW-UP LEMMA #K-UNIFORM HYPERGRAPHS #SIZE-RAMSEY NUMBER #REGULARITY LEMMA #SZEMEREDI THEOREM #TREES #Mathematics |
Tipo |
article original article publishedVersion |