The disk-percolation model on graphs


Autoria(s): LEBENSZTAYN, E.; RODRIGUEZ, P. M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

We study a long-range percolation model whose dynamics describe the spreading of an infection on an infinite graph. We obtain a sufficient condition for phase transition and prove all upper bound for the critical parameter of spherically symmetric trees. (C) 2008 Elsevier B.V. All rights reserved.

FAPESP[05/04001-5]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[06/04524-0]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

STATISTICS & PROBABILITY LETTERS, v.78, n.14, p.2130-2136, 2008

0167-7152

http://producao.usp.br/handle/BDPI/30796

10.1016/j.spl.2008.02.001

http://dx.doi.org/10.1016/j.spl.2008.02.001

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Statistics & Probability Letters

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #CONTINUUM PERCOLATION #TREES #Statistics & Probability
Tipo

article

original article

publishedVersion