220 resultados para Reaction-diffusion models

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have the purpose of analyzing the effect of explicit diffusion processes in a predator-prey stochastic lattice model. More precisely we wish to investigate the possible effects due to diffusion upon the thresholds of coexistence of species, i. e., the possible changes in the transition between the active state and the absorbing state devoid of predators. To accomplish this task we have performed time dependent simulations and dynamic mean-field approximations. Our results indicate that the diffusive process can enhance the species coexistence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the generic hyperbolicity of equilibria of a reaction-diffusion system with respect to nonlinear terms in the set of C(2)-functions equipped with the Whitney Topology. To accomplish this, we combine Baire`s Lemma and the usual Transversality Theorem. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Complicated patterns showing various spatial scales have been obtained in the past by coupling Turing systems in such a way that the scales of the independent systems resonate. This produces superimposed patterns with different length scales. Here we propose a model consisting of two identical reaction-diffusion systems coupled together in such a way that one of them produces a simple Turing pattern of spots or stripes, and the other traveling wave fronts that eventually become stationary. The basic idea is to assume that one of the systems becomes fixed after some time and serves as a source of morphogens for the other system. This mechanism produces patterns very similar to the pigmentation patterns observed in different species of stingrays and other fishes. The biological mechanisms that support the realization of this model are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Positional information in developing embryos is specified by spatial gradients of transcriptional regulators. One of the classic systems for studying this is the activation of the hunchback (hb) gene in early fruit fly (Drosophila) segmentation by the maternally-derived gradient of the Bicoid (Bcd) protein. Gene regulation is subject to intrinsic noise which can produce variable expression. This variability must be constrained in the highly reproducible and coordinated events of development. We identify means by which noise is controlled during gene expression by characterizing the dependence of hb mRNA and protein output noise on hb promoter structure and transcriptional dynamics. We use a stochastic model of the hb promoter in which the number and strength of Bcd and Hb (self-regulatory) binding sites can be varied. Model parameters are fit to data from WT embryos, the self-regulation mutant hb(14F), and lacZ reporter constructs using different portions of the hb promoter. We have corroborated model noise predictions experimentally. The results indicate that WT (self-regulatory) Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, rather than on Bcd fluctuations. The constructs and mutant, which lack self-regulation, indicate that the multiple Bcd binding sites in the hb promoter (and their strengths) also play a role in buffering noise. The model is robust to the variation in Bcd binding site number across a number of fly species. This study identifies particular ways in which promoter structure and regulatory dynamics reduce hb output noise. Insofar as many of these are common features of genes (e. g. multiple regulatory sites, cooperativity, self-feedback), the current results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we study the behavior of the solutions of nonlinear parabolic problems posed in a domain that degenerates into a line segment (thin domain) which has an oscillating boundary. We combine methods from linear homogenization theory for reticulated structures and from the theory on nonlinear dynamics of dissipative systems to obtain the limit problem for the elliptic and parabolic problems and analyze the convergence properties of the solutions and attractors of the evolutionary equations. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we continue the analysis of the asymptotic dynamics of reaction-diffusion problems in a dumbbell domain started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2) (2006) 551-597]. Here we study the limiting problem, that is, an evolution problem in a ""domain"" which consists of an open, bounded and smooth set Omega subset of R(N) with a curve R(0) attached to it. The evolution in both parts of the domain is governed by a parabolic equation. In Omega the evolution is independent of the evolution in R(0) whereas in R(0) the evolution depends on the evolution in Omega through the continuity condition of the solution at the junction points. We analyze in detail the linear elliptic and parabolic problem, the generation of linear and nonlinear semigroups, the existence and structure of attractors. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we conclude the analysis started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, AN Carvalho. G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz. Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are Upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in L(p) and H(1) norms. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user-defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous-Galerkin approximation and impose the Dirichlet boundary conditions strongly. By virtue of relaxing the continuity constraint at those elements. boundary locking is avoided and optimal-order convergence is achieved. This is shown through numerical experiments in reaction-diffusion problems. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a 1-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We deal with non-negative solutions and analyze the stability behavior of its unique positive equilibrium solution, which is given by the constant function u equivalent to 1. We show that if the delay is small, this equilibrium solution is asymptotically stable, similar as in the case without delay. We also show that, as the delay goes to infinity, this equilibrium becomes unstable and undergoes a cascade of Hopf bifurcations. The structure of this cascade will depend on the parameters appearing in the equation. This equation shows some dynamical behavior that differs from the case where the nonlinearity with delay is in the interior of the domain. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of this paper is to analyze the character of the first Hopf bifurcation (subcritical versus supercritical) that appears in a one-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We showed in the previous work [Arrieta et al., 2010] that if the delay is small, the unique non-negative equilibrium solution is asymptotically stable. We also showed that, as the delay increases and crosses certain critical value, this equilibrium becomes unstable and undergoes a Hopf bifurcation. This bifurcation is the first one of a cascade occurring as the delay goes to infinity. The structure of this cascade will depend on the parameters appearing in the equation. In this paper, we show that the first bifurcation that occurs is supercritical, that is, when the parameter is bigger than the delay bifurcation value, stable periodic orbits branch off from the constant equilibrium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the nonlinear phase of a dynamo process, the back-reaction of the magnetic field upon the turbulent motion results in a decrease of the turbulence level and therefore in a suppression of both the magnetic field amplification (the alpha-quenching effect) and the turbulent magnetic diffusivity (the eta-quenching effect). While the former has been widely explored, the effects of eta-quenching in the magnetic field evolution have rarely been considered. In this work, we investigate the role of the suppression of diffusivity in a flux-transport solar dynamo model that also includes a nonlinear alpha-quenching term. Our results indicate that, although for alpha-quenching the dependence of the magnetic field amplification with the quenching factor is nearly linear, the magnetic field response to eta-quenching is nonlinear and spatially nonuniform. We have found that the magnetic field can be locally amplified in this case, forming long-lived structures whose maximum amplitude can be up to similar to 2.5 times larger at the tachocline and up to similar to 2 times larger at the center of the convection zone than in models without quenching. However, this amplification leads to unobservable effects and to a worse distribution of the magnetic field in the butterfly diagram. Since the dynamo cycle period increases when the efficiency of the quenching increases, we have also explored whether the eta-quenching can cause a diffusion-dominated model to drift into an advection-dominated regime. We have found that models undergoing a large suppression in eta produce a strong segregation of magnetic fields that may lead to unsteady dynamo-oscillations. On the other hand, an initially diffusion-dominated model undergoing a small suppression in eta remains in the diffusion-dominated regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commonly consumed carbohydrate sweeteners derived from sugar cane, palm, and corn (syrups) were investigated to determine their potential to inhibit key enzymes relevant to Type 2 diabetes and hypertension based on the total phenolic content and antioxidant activity using in vitro models. Among sugar cane derivatives, brown sugars showed higher antidiabetes potential than white sugars; nevertheless, no angiotensin I-converting enzyme (ACE) inhibition was detected in both sugar classes. Brown sugar from Peru and Mauritius (dark muscovado) had the highest total phenolic content and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, which correlated with a moderate inhibition of yeast alpha-glucosidase without showing a significant effect on porcine pancreatic alpha-amylase activity. In addition, chlorogenic acid quantified by high-performance liquid chromatography was detected in these sugars (128 +/- 6 and 144 +/- 2 mu g/g of sample weight, respectively). Date sugar exhibited high alpha-glucosidase, alpha-amylase, and ACE inhibitory activities that correlated with high total phenolic content and antioxidant activity. Neither phenolic compounds or antioxidant activity was detected in corn syrups, indicating that nonphenolic factors may be involved in their significant ability to inhibit alpha-glucosidase, alpha-amylase, and ACE. This study provides a strong biochemical rationale for further in vivo studies and useful information to make better dietary sweetener choices for Type 2 diabetes and hypertension management.