THE ROLE OF DIFFUSIVITY QUENCHING IN FLUX-TRANSPORT DYNAMO MODELS


Autoria(s): GUERRERO, Gustavo; DIKPATI, Mausumi; PINO, Elisabete M. de Gouveia Dal
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

19/10/2012

19/10/2012

2009

Resumo

In the nonlinear phase of a dynamo process, the back-reaction of the magnetic field upon the turbulent motion results in a decrease of the turbulence level and therefore in a suppression of both the magnetic field amplification (the alpha-quenching effect) and the turbulent magnetic diffusivity (the eta-quenching effect). While the former has been widely explored, the effects of eta-quenching in the magnetic field evolution have rarely been considered. In this work, we investigate the role of the suppression of diffusivity in a flux-transport solar dynamo model that also includes a nonlinear alpha-quenching term. Our results indicate that, although for alpha-quenching the dependence of the magnetic field amplification with the quenching factor is nearly linear, the magnetic field response to eta-quenching is nonlinear and spatially nonuniform. We have found that the magnetic field can be locally amplified in this case, forming long-lived structures whose maximum amplitude can be up to similar to 2.5 times larger at the tachocline and up to similar to 2 times larger at the center of the convection zone than in models without quenching. However, this amplification leads to unobservable effects and to a worse distribution of the magnetic field in the butterfly diagram. Since the dynamo cycle period increases when the efficiency of the quenching increases, we have also explored whether the eta-quenching can cause a diffusion-dominated model to drift into an advection-dominated regime. We have found that models undergoing a large suppression in eta produce a strong segregation of magnetic fields that may lead to unsteady dynamo-oscillations. On the other hand, an initially diffusion-dominated model undergoing a small suppression in eta remains in the diffusion-dominated regime.

Brazilian Science Foundations FAPESP

CNPq

NASA[NNX08AQ34G]

National Science Foundation (NSF)

Identificador

ASTROPHYSICAL JOURNAL, v.701, n.1, p.725-736, 2009

0004-637X

http://producao.usp.br/handle/BDPI/27120

10.1088/0004-637X/701/1/725

http://dx.doi.org/10.1088/0004-637X/701/1/725

Idioma(s)

eng

Publicador

IOP PUBLISHING LTD

Relação

Astrophysical Journal

Direitos

restrictedAccess

Copyright IOP PUBLISHING LTD

Palavras-Chave #MHD #Sun: magnetic fields #SOLAR DYNAMO #MAGNETIC-FIELD #DIFFERENTIAL ROTATION #MERIDIONAL FLOW #ALPHA #SIMULATIONS #CONVECTION #MECHANISM #SHEAR #CONSTRAINTS #Astronomy & Astrophysics
Tipo

article

original article

publishedVersion