THE ROLE OF DIFFUSIVITY QUENCHING IN FLUX-TRANSPORT DYNAMO MODELS
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
19/10/2012
19/10/2012
2009
|
Resumo |
In the nonlinear phase of a dynamo process, the back-reaction of the magnetic field upon the turbulent motion results in a decrease of the turbulence level and therefore in a suppression of both the magnetic field amplification (the alpha-quenching effect) and the turbulent magnetic diffusivity (the eta-quenching effect). While the former has been widely explored, the effects of eta-quenching in the magnetic field evolution have rarely been considered. In this work, we investigate the role of the suppression of diffusivity in a flux-transport solar dynamo model that also includes a nonlinear alpha-quenching term. Our results indicate that, although for alpha-quenching the dependence of the magnetic field amplification with the quenching factor is nearly linear, the magnetic field response to eta-quenching is nonlinear and spatially nonuniform. We have found that the magnetic field can be locally amplified in this case, forming long-lived structures whose maximum amplitude can be up to similar to 2.5 times larger at the tachocline and up to similar to 2 times larger at the center of the convection zone than in models without quenching. However, this amplification leads to unobservable effects and to a worse distribution of the magnetic field in the butterfly diagram. Since the dynamo cycle period increases when the efficiency of the quenching increases, we have also explored whether the eta-quenching can cause a diffusion-dominated model to drift into an advection-dominated regime. We have found that models undergoing a large suppression in eta produce a strong segregation of magnetic fields that may lead to unsteady dynamo-oscillations. On the other hand, an initially diffusion-dominated model undergoing a small suppression in eta remains in the diffusion-dominated regime. Brazilian Science Foundations FAPESP CNPq NASA[NNX08AQ34G] National Science Foundation (NSF) |
Identificador |
ASTROPHYSICAL JOURNAL, v.701, n.1, p.725-736, 2009 0004-637X http://producao.usp.br/handle/BDPI/27120 10.1088/0004-637X/701/1/725 |
Idioma(s) |
eng |
Publicador |
IOP PUBLISHING LTD |
Relação |
Astrophysical Journal |
Direitos |
restrictedAccess Copyright IOP PUBLISHING LTD |
Palavras-Chave | #MHD #Sun: magnetic fields #SOLAR DYNAMO #MAGNETIC-FIELD #DIFFERENTIAL ROTATION #MERIDIONAL FLOW #ALPHA #SIMULATIONS #CONVECTION #MECHANISM #SHEAR #CONSTRAINTS #Astronomy & Astrophysics |
Tipo |
article original article publishedVersion |