Semilinear parabolic problems in thin domains with a highly oscillatory boundary


Autoria(s): ARRIETA, Jose M.; CARVALHO, Alexandre N.; PEREIRA, Marcone C.; SILVA, Ricardo P.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

In this paper, we study the behavior of the solutions of nonlinear parabolic problems posed in a domain that degenerates into a line segment (thin domain) which has an oscillating boundary. We combine methods from linear homogenization theory for reticulated structures and from the theory on nonlinear dynamics of dissipative systems to obtain the limit problem for the elliptic and parabolic problems and analyze the convergence properties of the solutions and attractors of the evolutionary equations. (C) 2011 Elsevier Ltd. All rights reserved.

MICINN, Spain

MICINN, Spain[MTM2009-07540]

MICINN, Spain[PHB2006-003 PC]

MICINN, Spain

MICINN, Spain

MICINN, Spain[PR2009-0027]

MICINN, Spain

MICINN, Spain[GR58/08]

MICINN, Spain

MICINN, Spain[GR35/10-A]

MICINN, Spain[920894]

MICINN, Spain

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq[305447/2005-0]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq[451761/2008-1]

CNPq[305210/2008-4]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

DGU

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

CAPES/DGU[267/2008]

FAPESP, Brazil[2008/53094-4]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP, Brazil[2010/18790-0]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, v.74, n.15, p.5111-5132, 2011

0362-546X

http://producao.usp.br/handle/BDPI/28837

10.1016/j.na.2011.05.006

http://dx.doi.org/10.1016/j.na.2011.05.006

Idioma(s)

eng

Publicador

PERGAMON-ELSEVIER SCIENCE LTD

Relação

Nonlinear Analysis-theory Methods & Applications

Direitos

restrictedAccess

Copyright PERGAMON-ELSEVIER SCIENCE LTD

Palavras-Chave #Thin domains #Dissipative parabolic equations #Global attractors #Upper semicontinuity #Lower semicontinuity #Homogenization #REACTION-DIFFUSION EQUATIONS #ATTRACTORS #DYNAMICS #HOMOGENIZATION #CONTINUITY #CONVERGENCE #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion