43 resultados para Lie algebras.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We study properties of self-iterating Lie algebras in positive characteristic. Let R = K[t(i)vertical bar i is an element of N]/(t(i)(p)vertical bar i is an element of N) be the truncated polynomial ring. Let partial derivative(i) = partial derivative/partial derivative t(i), i is an element of N, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...)))). Let L = Lie(p)(v(1), v(2)) subset of Der R be the restricted Lie algebra generated by these derivations. We establish the following properties of this algebra in case p = 2, 3. a) L has a polynomial growth with Gelfand-Kirillov dimension lnp/ln((1+root 5)/2). b) the associative envelope A = Alg(v(1), v(2)) of L has Gelfand-Kirillov dimension 2 lnp/ln((1+root 5)/2). c) L has a nil-p-mapping. d) L, A and the augmentation ideal of the restricted enveloping algebra u = u(0)(L) are direct sums of two locally nilpotent subalgebras. The question whether u is a nil-algebra remains open. e) the restricted enveloping algebra u(L) is of intermediate growth. These properties resemble those of Grigorchuk and Gupta-Sidki groups.
Resumo:
Generalizing Petrogradsky`s construction, we give examples of infinite-dimensional nil Lie algebras of finite Gelfand-Kirillov dimension over any field of positive characteristic.
Resumo:
In the present work, binary-Lie, assocyclic, and binary (-1,1) algebras are studied. We prove that, for every assocyclic algebra A, the algebra A(-) is binary-Lie. We find a simple non-Malcev binary-Lie superalgebra T that cannot be embedded in A(-s) for an assocyclic superalgebra A. We use the Grassmann envelope of T to prove the similar result for algebras. This solve negatively a problem by Filippov (see [1, Problem 2.108]). Finally, we prove that the superalgebra T is isomorphic to the commutator superalgebra A(-s) for a simple binary (-1,1) superalgebra A.
Resumo:
We study the problem of the existence of filtered multiplicative bases of a restricted enveloping algebra u(L), where L is a finite-dimensional and p-nilpotent restricted Lie algebra over a field of positive characteristic p.
Resumo:
In this paper we apply the method of functional identities to the study of group gradings by an abelian group G on simple Jordan algebras, under very mild restrictions on the grading group or the base field of coefficients.
Resumo:
We address two problems with the structure and representation theory of finite W-algebras associated with general linear Lie algebras. Finite W-algebras can be defined using either Kostant`s Whittaker modules or a quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of finite W-algebras. The second main result is a parameterization of finite families of irreducible Gelfand-Tsetlin modules using Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Gelfand-Tsetlin modules for finite W-algebras. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In [19], [24] we introduced a family of self-similar nil Lie algebras L over fields of prime characteristic p > 0 whose properties resemble those of Grigorchuk and Gupta-Sidki groups. The Lie algebra L is generated by two derivations v(1) = partial derivative(1) + t(0)(p-1) (partial derivative(2) + t(1)(p-1) (partial derivative(3) + t(2)(p-1) (partial derivative(4) + t(3)(p-1) (partial derivative(5) + t(4)(p-1) (partial derivative(6) + ...))))), v(2) = partial derivative(2) + t(1)(p-1) (partial derivative(3) + t(2)(p-1) (partial derivative(4) + t(3)(p-1) (partial derivative(5) + t(4)(p-1) (partial derivative(6) + ...)))) of the truncated polynomial ring K[t(i), i is an element of N vertical bar t(j)(p) =0, i is an element of N] in countably many variables. The associative algebra A generated by v(1), v(2) is equipped with a natural Z circle plus Z-gradation. In this paper we show that for p, which is not representable as p = m(2) + m + 1, m is an element of Z, the algebra A is graded nil and can be represented as a sum of two locally nilpotent subalgebras. L. Bartholdi [3] andYa. S. Krylyuk [15] proved that for p = m(2) + m + 1 the algebra A is not graded nil. However, we show that the second family of self-similar Lie algebras introduced in [24] and their associative hulls are always Z(p)-graded, graded nil, and are sums of two locally nilpotent subalgebras.
Resumo:
In this paper we construct two free field realizations of the elliptic affine Lie algebra sl(2, R) circle plus Omega(R)/dR where R = C[t. t(-1), u vertical bar u(2) = t(3) - 2bt(2) + t]. The first realization provides an analogue of Wakimoto`s construction for Affine Kac-Moody algebras, but in the setting of the elliptic affine Lie algebra. The second realization gives new types of representations analogous to Imaginary Verma modules in the Affine setting. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We give a list of all possible schemes for performing amino acid and codon assignments in algebraic models for the genetic code, which are consistent with a few simple symmetry principles, in accordance with the spirit of the algebraic approach to the evolution of the genetic code proposed by Hornos and Hornos. Our results are complete in the sense of covering all the algebraic models that arise within this approach, whether based on Lie groups/Lie algebras, on Lie superalgebras or on finite groups.
Resumo:
We prove that a polar orthogonal representation of a real reductive algebraic group has the same closed orbits as the isotropy representation of a pseudo-Riemannian symmetric space. We also develop a partial structural theory of polar orthogonal representations of real reductive algebraic groups which slightly generalizes some results of the structural theory of real reductive Lie algebras. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We show that if A is an abelian category satisfying certain mild conditions, then one can introduce the concept of a moduli space of (semi)stable objects which has the structure of a projective algebraic variety. This idea is applied to several important abelian categories in representation theory, like highest weight categories.
Resumo:
We describe the simple Lie superalgebras arising from the unital structurable superalgebras of characteristic 0 and construct four series of the unital simple structurable superalgebras of Cartan type. We give a classification of simple structurable superalgebras of Cartan type over an algebraically closed field F of characteristic 0. Together with the Faulkner theorem on the classification of classical such superalgebras, it gives a classification of the simple structurable superalgebras over F. Crown Copyright (C) 2010 Published by Elsevier Inc. All rights reserved.
Resumo:
One may construct, for any function on the integers, an irreducible module of level zero for affine sl(2) using the values of the function as structure constants. The modules constructed using exponential-polynomial functions realize the irreducible modules with finite-dimensional weight spaces in the category (O) over tilde of Chari. In this work, an expression for the formal character of such a module is derived using the highest weight theory of truncations of the loop algebra.
Resumo:
Let * be an involution of a group algebra FG induced by an involution of the group G. For char F not equal 2, we classify the torsion groups G with no elements of order 2 whose Lie algebra of *-skew elements is nilpotent.
Resumo:
Let F-sigma(lambda)vertical bar G vertical bar be a crossed product of a group G and the field F. We study the Lie properties of F-sigma(lambda)vertical bar G vertical bar in order to obtain a characterization of those crossed products which are upper (lower) Lie nilpotent and Lie (n, m)-Engel. (C) 2008 Elsevier Inc. All rights reserved.