The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite W-algebras


Autoria(s): FUTORNY, Vyacheslav; MOLEV, Alexander; OVSIENKO, Serge
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

We address two problems with the structure and representation theory of finite W-algebras associated with general linear Lie algebras. Finite W-algebras can be defined using either Kostant`s Whittaker modules or a quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of finite W-algebras. The second main result is a parameterization of finite families of irreducible Gelfand-Tsetlin modules using Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Gelfand-Tsetlin modules for finite W-algebras. (C) 2009 Elsevier Inc. All rights reserved.

Australian Research Council

Australian Research Council

CNPq[301743/2007-0]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fapesp[2005/60337-2]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

University of Sydney

University of Sydney

Identificador

ADVANCES IN MATHEMATICS, v.223, n.3, p.773-796, 2010

0001-8708

http://producao.usp.br/handle/BDPI/30734

10.1016/j.aim.2009.08.018

http://dx.doi.org/10.1016/j.aim.2009.08.018

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Advances in Mathematics

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Gelfand-Tsetlin modules #Finite W-algebras #Shifted Yangian #Gelfand-Tsetlin conjecture #SOLVABLE LIE-ALGEBRAS #REPRESENTATION-THEORY #QUANTIZATION #REDUCTION #SLICES #Mathematics
Tipo

article

original article

publishedVersion