ON SPECIALITY OF BINARY-LIE ALGEBRAS


Autoria(s): ARENAS, Manuel; SHESTAKOV, Ivan
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

In the present work, binary-Lie, assocyclic, and binary (-1,1) algebras are studied. We prove that, for every assocyclic algebra A, the algebra A(-) is binary-Lie. We find a simple non-Malcev binary-Lie superalgebra T that cannot be embedded in A(-s) for an assocyclic superalgebra A. We use the Grassmann envelope of T to prove the similar result for algebras. This solve negatively a problem by Filippov (see [1, Problem 2.108]). Finally, we prove that the superalgebra T is isomorphic to the commutator superalgebra A(-s) for a simple binary (-1,1) superalgebra A.

FAPESP[2007/58048-8]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[2005/60337-2]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

CNPq[305344/2009-9]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Identificador

JOURNAL OF ALGEBRA AND ITS APPLICATIONS, v.10, n.2, p.257-268, 2011

0219-4988

http://producao.usp.br/handle/BDPI/30687

10.1142/S0219498811004550

http://dx.doi.org/10.1142/S0219498811004550

Idioma(s)

eng

Publicador

WORLD SCIENTIFIC PUBL CO PTE LTD

Relação

Journal of Algebra and Its Applications

Direitos

restrictedAccess

Copyright WORLD SCIENTIFIC PUBL CO PTE LTD

Palavras-Chave #Assocyclic algebra #binary-Lie algebra #speciality problem #super-algebra #(-1,1)-algebra #SUPERALGEBRAS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion