ON SPECIALITY OF BINARY-LIE ALGEBRAS
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
In the present work, binary-Lie, assocyclic, and binary (-1,1) algebras are studied. We prove that, for every assocyclic algebra A, the algebra A(-) is binary-Lie. We find a simple non-Malcev binary-Lie superalgebra T that cannot be embedded in A(-s) for an assocyclic superalgebra A. We use the Grassmann envelope of T to prove the similar result for algebras. This solve negatively a problem by Filippov (see [1, Problem 2.108]). Finally, we prove that the superalgebra T is isomorphic to the commutator superalgebra A(-s) for a simple binary (-1,1) superalgebra A. FAPESP[2007/58048-8] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[2005/60337-2] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq[305344/2009-9] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, v.10, n.2, p.257-268, 2011 0219-4988 http://producao.usp.br/handle/BDPI/30687 10.1142/S0219498811004550 |
Idioma(s) |
eng |
Publicador |
WORLD SCIENTIFIC PUBL CO PTE LTD |
Relação |
Journal of Algebra and Its Applications |
Direitos |
restrictedAccess Copyright WORLD SCIENTIFIC PUBL CO PTE LTD |
Palavras-Chave | #Assocyclic algebra #binary-Lie algebra #speciality problem #super-algebra #(-1,1)-algebra #SUPERALGEBRAS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |