Polar orthogonal representations of real reductive algebraic groups


Autoria(s): GEATTI, Laura; GORODSKI, Claudio
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

We prove that a polar orthogonal representation of a real reductive algebraic group has the same closed orbits as the isotropy representation of a pseudo-Riemannian symmetric space. We also develop a partial structural theory of polar orthogonal representations of real reductive algebraic groups which slightly generalizes some results of the structural theory of real reductive Lie algebras. (c) 2008 Elsevier Inc. All rights reserved.

Identificador

JOURNAL OF ALGEBRA, v.320, n.7, p.3036-3061, 2008

0021-8693

http://producao.usp.br/handle/BDPI/30628

10.1016/j.jalgebra.2008.06.027

http://dx.doi.org/10.1016/j.jalgebra.2008.06.027

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Journal of Algebra

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #polar representations #real reductive algebraic groups #pseudo-Riemannian symmetric spaces #SYMMETRIC-SPACES #ISOPARAMETRIC HYPERSURFACES #ORBITS #CLASSIFICATION #FORMS #Mathematics
Tipo

article

original article

publishedVersion